ü\Óü¿Æ¼¼Íø

 ÕÒ»ØÃÜÂë
 Á¢¼´×¢²á
mito
²é¿´: 3168|»Ø¸´: 5

СÏó×îÐÂPython»úÆ÷ѧϰÉý¼¶°æÊÓÆµÑ§Ï°½Ì³Ì

[¸´ÖÆÁ´½Ó]

8Íò

Ö÷Ìâ

608

»ØÌû

27Íò

»ý·Ö

¹ÜÀíÔ±

Rank: 9Rank: 9Rank: 9

»ý·Ö
275170
QQ
·¢±íÓÚ 2017-12-23 08:36:12 | ÏÔʾȫ²¿Â¥²ã |ÔĶÁģʽ
СÏó×îÐÂPython»úÆ÷ѧϰÉý¼¶°æÊÓÆµÑ§Ï°½Ì³Ì
±¾¿Î³ÌÌØµãÊÇ´ÓÊýѧ²ãÃæÍÆµ¼×î¾­µäµÄ»úÆ÷ѧϰËã·¨£¬ÒÔ¼°Ã¿ÖÖËã·¨µÄʾÀýºÍ´úÂëʵÏÖ£¨Python£©¡¢ÈçºÎ×öËã·¨µÄ²ÎÊýµ÷ÊÔ¡¢ÒÔʵ¼ÊÓ¦Óð¸Àý·ÖÎö¸÷ÖÖËã·¨µÄÑ¡ÔñµÈ¡£
¿Î³ÌĿ¼£º
µÚÒ»¿Î£º»úÆ÷ѧϰµÄÊýѧ»ù´¡1 - Êýѧ·ÖÎö
1. »úÆ÷ѧϰµÄÒ»°ã·½·¨ºÍºáÏò±È½Ï
2. ÊýѧÊÇÓÐÓõģºÒÔSVDΪÀý
3. »úÆ÷ѧϰµÄ½Ç¶È¿´Êýѧ
4. ¸´Ï°Êýѧ·ÖÎö
5. Ö±¹Û½âÊͳ£Êýe
6. µ¼Êý/ÌݶÈ
7. Ëæ»úÌݶÈϽµ
8. TaylorչʽµÄÂ䵨ӦÓÃ
9. giniϵÊý
10. ͹º¯Êý
11. Jensen²»µÈʽ
12. ×éºÏÊýÓëÐÅÏ¢ìØµÄ¹ØÏµ
µÚ¶þ¿Î£º»úÆ÷ѧϰµÄÊýѧ»ù´¡2 - ¸ÅÂÊÂÛÓ뱴Ҷ˹ÏÈÑé
1. ¸ÅÂÊÂÛ»ù´¡
2. ¹Åµä¸ÅÐÍ
3. ±´Ò¶Ë¹¹«Ê½
4. ÏÈÑé·Ö²¼/ºóÑé·Ö²¼/¹²éî·Ö²¼
5. ³£¼û¸ÅÂÊ·Ö²¼
6. ²´ËÉ·Ö²¼ºÍÖ¸Êý·Ö²¼µÄÎïÀíÒâÒå
7. Э·½²î(¾ØÕó)ºÍÏà¹ØÏµÊý
8. ¶ÀÁ¢ºÍ²»Ïà¹Ø
9. ´óÊý¶¨ÂɺÍÖÐÐļ«ÏÞ¶¨ÀíµÄʵ¼ùÒâÒå
10. Éî¿ÌÀí½â×î´óËÆÈ»¹À¼ÆMLEºÍ×î´óºóÑé¹À¼ÆMAP
11. ¹ýÄâºÏµÄÊýѧԭÀíÓë½â¾ö·½°¸
µÚÈý¿Î£º»úÆ÷ѧϰµÄÊýѧ»ù´¡3 - ¾ØÕóºÍÏßÐÔ´úÊý
1. ÏßÐÔ´úÊýÔÚÊýѧ¿ÆÑ§ÖеĵØÎ»
2. Âí¶û¿Æ·òÄ£ÐÍ
3. ¾ØÕó³Ë·¨µÄÖ±¹Û±í´ï
4. ×´Ì¬×ªÒÆ¾ØÕó
5. ¾ØÕóºÍÏòÁ¿×é
6. ÌØÕ÷ÏòÁ¿µÄ˼¿¼ºÍʵ¼ù¼ÆËã
7. QR·Ö½â
8. ¶Ô³ÆÕó¡¢Õý½»Õó¡¢Õý¶¨Õó
9. Êý¾Ý°×»¯¼°ÆäÓ¦ÓÃ
10. ÏòÁ¿¶ÔÏòÁ¿Çóµ¼
11. ±êÁ¿¶ÔÏòÁ¿Çóµ¼
12. ±êÁ¿¶Ô¾ØÕóÇóµ¼
µÚËĿΣºPython»ù´¡1 - Python¼°ÆäÊýѧ¿â
1. ½âÊÍÆ÷Python2.7ÓëIDE£ºAnaconda/Pycharm
2. Python»ù´¡£ºÁбí/Ôª×é/×Öµä/Àà/Îļþ
3. TaylorչʽµÄ´úÂëʵÏÖ
4. numpy/scipy/matplotlib/pandaµÄ½éÉܺ͵äÐÍʹÓÃ
5. ¶àÔª¸ß˹·Ö²¼
6. ²´ËÉ·Ö²¼¡¢ÃÝÂÉ·Ö²¼
7. µäÐÍͼÏñ´¦Àí
8. ºûµûЧӦ
9. ·ÖÐÎÓë¿ÉÊÓ»¯
µÚÎå¿Î£ºPython»ù´¡2 - »úÆ÷ѧϰ¿â
1. scikit-learnµÄ½éÉܺ͵äÐÍʹÓÃ
2. Ëðʧº¯ÊýµÄ»æÖÆ
3. ¶àÖÖÊýѧÇúÏß
4. ¶àÏîʽÄâºÏ
5. ¿ìËÙ¸µÀïÒ¶±ä»»FFT
6. ÆæÒìÖµ·Ö½âSVD
7. Soble/Prewitt/LaplacianËã×ÓÓë¾í»ýÍøÂç
8. ¾í»ýÓë(Ö¸Êý)ÒÆ¶¯Æ½¾ùÏß
9. ¹ÉƱÊý¾Ý·ÖÎö
µÚÁù¿Î£ºPython»ù´¡3 - Êý¾ÝÇåÏ´ºÍÌØÕ÷Ñ¡Ôñ
1. ʵ¼ÊÉú²úÎÊÌâÖÐËã·¨ºÍÌØÕ÷µÄ¹ØÏµ
2. ¹ÉƱÊý¾ÝµÄÌØÕ÷ÌáÈ¡ºÍÓ¦ÓÃ
3. Ò»ÖÂÐÔ¼ìÑé
4. ȱʧÊý¾ÝµÄ´¦Àí
5. »·¾³Êý¾ÝÒì³£¼ì²âºÍ·ÖÎö
6. Ä£ºýÊý¾Ý²éѯºÍÊý¾ÝУÕý·½·¨¡¢Ëã·¨¡¢Ó¦ÓÃ
7. ÆÓËØ±´Ò¶Ë¹ÓÃÓÚð°Î²»¨Êý¾Ý
8. GaussianNB/MultinomialNB/BernoulliNB
9. ÆÓËØ±´Ò¶Ë¹ÓÃÓÚ18000+ƪ/SogouÐÂÎÅÎı¾µÄ·ÖÀà
µÚÆß¿Î£º »Ø¹é
1. ÏßÐԻعé
2. Logistic/Softmax»Ø¹é
3. ¹ãÒåÏßÐԻعé
4. L1/L2ÕýÔò»¯
5. RidgeÓëLASSO
6. Elastic Net
7. ÌݶÈϽµËã·¨£ºBGDÓëSGD
8. ÌØÕ÷Ñ¡ÔñÓë¹ýÄâºÏ
µÚ°Ë¿Î£ºLogistic»Ø¹é
1. Sigmoidº¯ÊýµÄÖ±¹Û½âÊÍ
2. Softmax»Ø¹éµÄ¸ÅÄîÔ´Í·
3. Logistic/Softmax»Ø¹é
4. ×î´óìØÄ£ÐÍ
5. K-LÉ¢¶È
6. Ëðʧº¯Êý
7. Softmax»Ø¹éµÄʵÏÖÓëµ÷²Î
µÚ¾Å¿Î£º»Ø¹éʵ¼ù
1. »úÆ÷ѧϰsklearn¿â½éÉÜ
2. ÏßÐԻعé´úÂëʵÏֺ͵÷²Î
3. Softmax»Ø¹é´úÂëʵÏֺ͵÷²Î
4. Ridge»Ø¹é/LASSO/Elastic Net
5. Logistic/Softmax»Ø¹é
6. ¹ã¸æÍ¶ÈëÓëÏúÊÛ¶î»Ø¹é·ÖÎö
7. ð°Î²»¨Êý¾Ý¼¯µÄ·ÖÀà
8. ½»²æÑéÖ¤
9. Êý¾Ý¿ÉÊÓ»¯
µÚÊ®¿Î£º¾ö²ßÊ÷ºÍËæ»úÉ­ÁÖ
1. ìØ¡¢ÁªºÏìØ¡¢Ìõ¼þìØ¡¢KLÉ¢¶È¡¢»¥ÐÅÏ¢
2. ×î´óËÆÈ»¹À¼ÆÓë×î´óìØÄ£ÐÍ
3. ID3¡¢C4.5¡¢CARTÏê½â
4. ¾ö²ßÊ÷µÄÕýÔò»¯
5. Ô¤¼ôÖ¦ºÍºó¼ôÖ¦
6. Bagging
7. Ëæ»úÉ­ÁÖ
8. ²»Æ½ºâÊý¾Ý¼¯µÄ´¦Àí
9. ÀûÓÃËæ»úÉ­ÁÖ×öÌØÕ÷Ñ¡Ôñ
10. ʹÓÃËæ»úÉ­ÁÖ¼ÆËãÑù±¾ÏàËÆ¶È
11. Êý¾ÝÒì³£Öµ¼ì²â
µÚʮһ¿Î£ºËæ»úÉ­ÁÖʵ¼ù
1. Ëæ»úÉ­ÁÖÓëÌØÕ÷Ñ¡Ôñ
2. ¾ö²ßÊ÷Ó¦ÓÃÓڻعé
3. ¶à±ê¼ÇµÄ¾ö²ßÊ÷»Ø¹é
4. ¾ö²ßÊ÷ºÍËæ»úÉ­ÁֵĿÉÊÓ»¯
5. ÆÏÌѾÆÊý¾Ý¼¯µÄ¾ö²ßÊ÷/Ëæ»úÉ­ÁÖ·ÖÀà
6. ²¨Ê¿¶Ù·¿¼ÛÔ¤²â
µÚÊ®¶þ¿Î£ºÌáÉý
1. ÌáÉýΪʲôÓÐЧ
2. ÌݶÈÌáÉý¾ö²ßÊ÷GBDT
3. XGBoostËã·¨Ïê½â
4. AdaboostËã·¨
5. ¼Ó·¨Ä£ÐÍÓëÖ¸ÊýËðʧ
µÚÊ®Èý¿Î£ºÌáÉýʵ¼ù
1. AdaboostÓÃÓÚÄ¢¹½Êý¾Ý·ÖÀà
2. AdaboostÓëËæ»úÉ­ÁֵıȽÏ
3. XGBoost¿â½éÉÜ
4. TaylorչʽÓëѧϰËã·¨
5. KAGGLE¼ò½é
6. ̩̹Äá¿Ë³Ë¿Í´æ»îÂʹÀ¼Æ
µÚÊ®ËĿΣºSVM
1. ÏßÐÔ¿É·ÖÖ§³ÖÏòÁ¿»ú
2. Èí¼ä¸ôµÄ¸Ä½ø
3. Ëðʧº¯ÊýµÄÀí½â
4. ºËº¯ÊýµÄÔ­ÀíºÍÑ¡Ôñ
5. SMOËã·¨
6. Ö§³ÖÏòÁ¿»Ø¹éSVR
µÚÊ®Îå¿Î£ºSVMʵ¼ù
1. libSVM´úÂë¿â½éÉÜ
2. ԭʼÊý¾ÝºÍÌØÕ÷ÌáÈ¡
3. ÆÏÌѾÆÊý¾Ý·ÖÀà
4. Êý×ÖͼÏñµÄÊÖдÌåʶ±ð
5. SVRÓÃÓÚʱ¼äÐòÁÐÇúÏßÔ¤²â
6. SVM¡¢Logistic»Ø¹é¡¢Ëæ»úÉ­ÁÖÈýÕߵĺáÏò±È½Ï
µÚÊ®Áù¿Î£º¾ÛÀࣨÉÏ£©
1. ¸÷ÖÖÏàËÆ¶È¶ÈÁ¿¼°ÆäÏ໥¹ØÏµ
2. JaccardÏàËÆ¶ÈºÍ׼ȷÂÊ¡¢ÕÙ»ØÂÊ
3. PearsonÏà¹ØÏµÊýÓëÓàÏÒÏàËÆ¶È
4. K-meansÓëK-Medoids¼°±äÖÖ
5. APËã·¨(Sci07)/LPAËã·¨¼°ÆäÓ¦ÓÃ
µÚÊ®Æß¿Î£º¾ÛÀࣨÏ£©
1. ÃܶȾÛÀàDBSCAN/DensityPeak(Sci14)
2. DensityPeak(Sci14)
3. Æ×¾ÛÀàSC
4. ¾ÛÀàÆÀ¼ÛAMI/ARI/Silhouette
5. LPAËã·¨¼°ÆäÓ¦ÓÃ
µÚÊ®°Ë¿Î£º¾ÛÀàʵ¼ù
1. K-Means++Ëã·¨Ô­ÀíºÍʵÏÖ
2. ÏòÁ¿Á¿»¯VQ¼°Í¼Ïñ½üËÆ
3. ²¢²é¼¯µÄʵ¼ùÓ¦ÓÃ
4. ÃܶȾÛÀàµÄ´úÂëʵÏÖ
5. Æ×¾ÛÀàÓÃÓÚͼƬ·Ö¸î
µÚÊ®¾Å¿Î£ºEMËã·¨
1. ×î´óËÆÈ»¹À¼Æ
2. Jensen²»µÈʽ
3. ÆÓËØÀí½âEMËã·¨
4. ¾«È·ÍƵ¼EMËã·¨
5. EMËã·¨µÄÉîÈëÀí½â
6. »ìºÏ¸ß˹·Ö²¼
7. Ö÷ÌâÄ£ÐÍpLSA
µÚ¶þÊ®¿Î£ºEMË㷨ʵ¼ù
1. ¶àÔª¸ß˹·Ö²¼µÄEMʵÏÖ
2. ·ÖÀà½á¹ûµÄÊý¾Ý¿ÉÊÓ»¯
3. EMÓë¾ÛÀàµÄ±È½Ï
4. Dirichlet¹ý³ÌEM
5. Èýά¼°µÈ¸ßÏßµÈͼ¼þµÄ»æÖÆ
6. Ö÷ÌâÄ£ÐÍpLSAÓëEMËã·¨
µÚ¶þʮһ¿Î£ºÖ÷ÌâÄ£ÐÍLDA
1. ±´Ò¶Ë¹Ñ§ÅɵÄÄ£ÐÍÈÏʶ
2. Beta·Ö²¼Óë¶þÏî·Ö²¼
3. ¹²éîÏÈÑé·Ö²¼
4. Dirichlet·Ö²¼
5. Laplaceƽ»¬
6. Gibbs²ÉÑùÏê½â
µÚ¶þÊ®¶þ¿Î£ºLDAʵ¼ù
1. ÍøÂçÅÀ³æµÄÔ­ÀíºÍ´úÂëʵÏÖ
2. Í£Ö¹´ÊºÍ¸ßƵ´Ê
3. ¶¯ÊÖ×Ô¼ºÊµÏÖLDA
4. LDA¿ªÔ´°üµÄʹÓú͹ý³Ì·ÖÎö
5. Metropolis-HastingsËã·¨
6. MCMC
7. LDAÓëword2vecµÄ±È½Ï
8. TextRankËã·¨Óëʵ¼ù
µÚ¶þÊ®Èý¿Î£ºÒþÂí¶û¿Æ·òÄ£ÐÍHMM
1. ¸ÅÂʼÆËãÎÊÌâ
2. ǰÏò/ºóÏòËã·¨
3. HMMµÄ²ÎÊýѧϰ
4. Baum-WelchËã·¨Ïê½â
5. ViterbiËã·¨Ïê½â
6. ÒþÂí¶û¿Æ·òÄ£Ð͵ÄÓ¦ÓÃÓÅÁӱȽÏ
µÚ¶þÊ®ËĿΣºHMMʵ¼ù
1. ¶¯ÊÖ×Ô¼ºÊµÏÖHMMÓÃÓÚÖÐÎÄ·Ö´Ê
2. ¶à¸öÓïÑÔ·Ö´Ê¿ªÔ´°üµÄʹÓú͹ý³Ì·ÖÎö
3. ÎļþÊý¾Ý¸ñʽUFT-8¡¢Unicode
4. Í£Ö¹´ÊºÍ±êµã·ûºÅ¶Ô·Ö´ÊµÄÓ°Ïì
5. ǰÏòºóÏòËã·¨¼ÆËã¸ÅÂÊÒç³öµÄ½â¾ö·½°¸
6. ·¢ÏÖдʺͷִÊЧ¹û·ÖÎö
7. ¸ß˹»ìºÏÄ£ÐÍHMM
8. GMM-HMMÓÃÓÚ¹ÉÆ±Êý¾ÝÌØÕ÷ÌáÈ¡

Óοͣ¬Èç¹ûÄúÒª²é¿´±¾ÌûÒþ²ØÄÚÈÝÇë»Ø¸´

¸ü¶àÌû×ÓÍÆ¼ö

»Ø¸´

ʹÓõÀ¾ß ¾Ù±¨

0

Ö÷Ìâ

355

»ØÌû

978

»ý·Ö

¸ß¼¶»áÔ±

Rank: 4

»ý·Ö
978
·¢±íÓÚ 2017-12-26 19:20:32 | ÏÔʾȫ²¿Â¥²ã
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
»Ø¸´

ʹÓõÀ¾ß ¾Ù±¨

0

Ö÷Ìâ

555

»ØÌû

1367

»ý·Ö

½ðÅÆ»áÔ±

Rank: 5Rank: 5

»ý·Ö
1367
·¢±íÓÚ 2018-3-11 19:05:23 | ÏÔʾȫ²¿Â¥²ã
Â¥Ö÷ÐÁ¿à£¬¸Ðл·ÖÏí£¬Ð»Ð»
»Ø¸´

ʹÓõÀ¾ß ¾Ù±¨

0

Ö÷Ìâ

517

»ØÌû

1196

»ý·Ö

½ðÅÆ»áÔ±

Rank: 5Rank: 5

»ý·Ö
1196
·¢±íÓÚ 2018-3-15 15:30:16 | ÏÔʾȫ²¿Â¥²ã
4564564564654564654565
»Ø¸´

ʹÓõÀ¾ß ¾Ù±¨

0

Ö÷Ìâ

1Íò

»ØÌû

3Íò

»ý·Ö

ÌåÑéVIP

Rank: 7Rank: 7Rank: 7

»ý·Ö
31410
·¢±íÓÚ 2020-2-16 18:39:02 | ÏÔʾȫ²¿Â¥²ã
¿´Ìû»ØÌûÊÇÃÀµÂ£¡Ð»Ð»ÐéÄⱦ¿âÍø·ÖÏí£¡
»Ø¸´

ʹÓõÀ¾ß ¾Ù±¨

0

Ö÷Ìâ

2Íò

»ØÌû

4Íò

»ý·Ö

½ûÖ¹·ÃÎÊ

»ý·Ö
41607
·¢±íÓÚ 2021-10-1 15:45:43 | ÏÔʾȫ²¿Â¥²ã
Ìáʾ: ×÷Õß±»½ûÖ¹»òɾ³ý ÄÚÈÝ×Ô¶¯ÆÁ±Î
»Ø¸´

ʹÓõÀ¾ß ¾Ù±¨

QQ|Archiver|ÊÖ»ú°æ|ü\Óü¿Æ¼¼Íø

GMT+8, 2025-11-30 18:40 , Processed in 0.204552 second(s), 26 queries .

Powered by Discuz! X3.4

© 2001-2023 Discuz! Team.

¿ìËٻظ´ ·µ»Ø¶¥²¿ ·µ»ØÁбí