ü\Óü¿Æ¼¼Íø

 ÕÒ»ØÃÜÂë
 Á¢¼´×¢²á
mito
²é¿´: 2068|»Ø¸´: 1

Ê×ϯAI¼Ü¹¹Ê¦ ·Ö²¼Ê½¸ßÐÔÄÜÉî¶ÈѧϰʵսÅàÑø¼Æ»®

[¸´ÖÆÁ´½Ó]

8Íò

Ö÷Ìâ

608

»ØÌû

27Íò

»ý·Ö

¹ÜÀíÔ±

Rank: 9Rank: 9Rank: 9

»ý·Ö
275170
QQ
·¢±íÓÚ 2022-9-7 10:40:21 | ÏÔʾȫ²¿Â¥²ã |ÔĶÁģʽ
Ê×ϯAI¼Ü¹¹Ê¦ ·Ö²¼Ê½¸ßÐÔÄÜÉî¶ÈѧϰʵսÅàÑø¼Æ»®
©À©¤µÚ01ÖÜ ¿ª°àµäÀñ
©¦  ©À©¬¿ª°àµäÀñ1.mp4
©¦  ©À©¬¿ª°àµäÀñ2.mp4
©¦  ©¸©¬¿ª°àµäÀñ3.mp4
©À©¤µÚ02ÖÜ »ù´¡ÀíÂÛ¼°¿Î³Ì½éÉÜ
©¦  ©À©¬lecture1.mp4
©¦  ©À©¬lecture2.mp4
©¦  ©À©¬review1.mp4
©¦  ©À©¬review2.mp4
©¦  ©¸©¬review3.mp4
©À©¤µÚ03ÖÜ ²¢Ðм°·Ö²¼Ê½¿ò¼Ü¸ÅÊö
©¦  ©À©¤01.¿ò¼Ü¸ÅÊö
©¦  ©¦  ©À©¬²¢Ðм°·Ö²¼Ê½¿ò¼Ü¸ÅÊö1.mp4
©¦  ©¦  ©À©¬²¢Ðм°·Ö²¼Ê½¿ò¼Ü¸ÅÊö2.mp4
©¦  ©¦  ©À©¬²¢Ðм°·Ö²¼Ê½¿ò¼Ü¸ÅÊö3.mp4
©¦  ©¦  ©À©¬²¢Ðм°·Ö²¼Ê½¿ò¼Ü¸ÅÊö4.mp4
©¦  ©¦  ©¸©¬²¢Ðм°·Ö²¼Ê½¿ò¼Ü¸ÅÊö5.mp4
©¦  ©À©¤02.´úÂëʵս
©¦  ©¦  ©À©¬´úÂëʵս¿Î³Ì1.mp4
©¦  ©¦  ©À©¬´úÂëʵս¿Î³Ì2.mp4
©¦  ©¦  ©¸©¬´úÂëʵս¿Î³Ì3.mp4
©¦  ©¸©¤03.ÔĶÁpaper
©¦  ©¸©¤©À©¬ÈçºÎÔĶÁPaper1.mp4
©¦  ©¸©¤©¸©¬ÈçºÎÔĶÁPaper2.mp4
©À©¤µÚ04ÖÜ »·¾³°²×°ÓëgitlabµÄʹÓÃ
©¦  ©À©¤01.»·¾³°²×°ÓëgitlabµÄʹÓÃ
©¦  ©¦  ©À©¬»·¾³°²×°ÓëgitlabµÄʹÓÃ1.mp4
©¦  ©¦  ©¸©¬»·¾³°²×°ÓëgitlabµÄʹÓÃ2.mp4
©¦  ©À©¤02.¾­µä²¢ÐÐģʽ
©¦  ©¦  ©À©¬¾­µä²¢ÐÐģʽ1.mp4
©¦  ©¦  ©¸©¬¾­µä²¢ÐÐģʽ2.mp4
©¦  ©¸©¤03.Speaker-Aware Talking-Head Animation
©¦  ©¸©¤©À©¬SpeakerAwareTalkingHeadAnimation1.mp4
©¦  ©¸©¤©¸©¬SpeakerAwareTalkingHeadAnimation2.mp4
©À©¤µÚ05ÖÜ ¾í»ý½á¹¹¼°Æä¼ÆËã
©¦  ©À©¤01.¾í»ý½á¹¹¼°Æä¼ÆËã
©¦  ©¦  ©À©¬¾í»ý½á¹¹¼°Æä¼ÆËã1.mp4
©¦  ©¦  ©À©¬¾í»ý½á¹¹¼°Æä¼ÆËã2.mp4
©¦  ©¦  ©À©¬¾í»ý½á¹¹¼°Æä¼ÆËã3.mp4
©¦  ©¦  ©¸©¬¾í»ý½á¹¹¼°Æä¼ÆËã4.mp4
©¦  ©À©¤02.EFFICIENT WINOGRAD CONVOLUTION VIA INTEGER ARITHMETIC
©¦  ©¦  ©À©¬EFFICIENTWINOGRADCONVOLUTIONVIAINTEGERARITHMETIC1.mp4
©¦  ©¦  ©¸©¬EFFICIENTWINOGRADCONVOLUTIONVIAINTEGERARITHMETIC2.mp4
©¦  ©¸©¤03.ǰºóÏòËã·¨
©¦  ©¸©¤©À©¬Ç°ºóÏòËã·¨1.mp4
©¦  ©¸©¤©¸©¬Ç°ºóÏòËã·¨2.mp4
©À©¤µÚ06ÖÜ Ä¿±ê¼ì²âËã·¨
©¦  ©À©¤01.Ä¿±ê¼ì²âËã·¨
©¦  ©¦  ©À©¬Ä¿±ê¼ì²âËã·¨1.mp4
©¦  ©¦  ©À©¬Ä¿±ê¼ì²âËã·¨2.mp4
©¦  ©¦  ©À©¬Ä¿±ê¼ì²âËã·¨3.mp4
©¦  ©¦  ©À©¬Ä¿±ê¼ì²âËã·¨4.mp4
©¦  ©¦  ©¸©¬Ä¿±ê¼ì²âËã·¨5.mp4
©¦  ©¸©¤02.Distilling the Knowledge in a Neural Network
©¦  ©¸©¤©¸©¬DistillingtheKnowledgeinaNeuralNetwork.mp4
©À©¤µÚ07ÖÜ Lecture1 NvidiaTensortºËÐÄËã·¨ºÍPlugin¿ª·¢
©¦  ©À©¤Lecture1NvidiaTensortºËÐÄËã·¨ºÍPlugin¿ª·¢
©¦  ©¦  ©À©¬NvidiaTensortºËÐÄËã·¨ºÍPlugin¿ª·¢-01.mp4
©¦  ©¦  ©À©¬NvidiaTensortºËÐÄËã·¨ºÍPlugin¿ª·¢2.mp4
©¦  ©¦  ©À©¬NvidiaTensortºËÐÄËã·¨ºÍPlugin¿ª·¢3.mp4
©¦  ©¦  ©¸©¬NvidiaTensortºËÐÄËã·¨ºÍPlugin¿ª·¢4.mp4
©¦  ©¸©¤PaperDistillingheKnowledgeinaNeuralNetwork
©¦  ©¸©¤©¸©¬Paper Distilling the Knowledge in a Neural Network.mp4
©À©¤µÚ08ÖÜ TensoRTÏê½² ÕæÊµ»·¾³ÏµĴúÂë²Ù×÷
©¦  ©À©¤DynamicetworkSurgeryorEfficientDNNs
©¦  ©¦  ©¸©¬DynamicNetworkSurgeryforEfficientDNNs.mp4
©¦  ©À©¤LectureTensoRTÏê½²ÕæÊµ»·¾³ÏµĴúÂë²Ù×÷
©¦  ©¦  ©À©¬TensoRTÏê½²ÕæÊµ»·¾³ÏµĴúÂë²Ù×÷1.mp4
©¦  ©¦  ©À©¬TensoRTÏê½²ÕæÊµ»·¾³ÏµĴúÂë²Ù×÷2.mp4
©¦  ©¦  ©À©¬TensoRTÏê½²ÕæÊµ»·¾³ÏµĴúÂë²Ù×÷3.mp4
©¦  ©¦  ©¸©¬TensoRTÏê½²ÕæÊµ»·¾³ÏµĴúÂë²Ù×÷4.mp4
©¦  ©¸©¤TensorRTpluginnmsPluginÕâ¸öplugin²å¼þµÄ¾ßÌå
©¦  ©¸©¤©À©¬²å¼þµÄ¾ßÌå´úÂëʵÏÖ1.mp4
©¦  ©¸©¤©À©¬²å¼þµÄ¾ßÌå´úÂëʵÏÖ2.mp4
©¦  ©¸©¤©¸©¬²å¼þµÄ¾ßÌå´úÂëʵÏÖ3.mp4
©À©¤µÚ09ÖÜ ¸öÐÔ»¯ÓïÒôºÏ³ÉÏîÄ¿¼¼Êõ¸ÅÀÀ
©¦  ©À©¤Improving Neural Network Quantization without Retraining using
©¦  ©¦  ©¸©¬ImprovingNeuralNetworkQuantization.mp4
©¦  ©À©¤Lecture ¸öÐÔ»¯ÓïÒôºÏ³ÉÏîÄ¿¼¼Êõ¸ÅÀÀ
©¦  ©¦  ©À©¬¸öÐÔ»¯ÓïÒôºÏ³ÉÏîÄ¿¼¼Êõ¸ÅÀÀ1.mp4
©¦  ©¦  ©À©¬¸öÐÔ»¯ÓïÒôºÏ³ÉÏîÄ¿¼¼Êõ¸ÅÀÀ2.mp4
©¦  ©¦  ©¸©¬¸öÐÔ»¯ÓïÒôºÏ³ÉÏîÄ¿¼¼Êõ¸ÅÀÀ3.mp4
©¦  ©¸©¤TensorRT SSD ÍÆÀí
©¦  ©¸©¤©À©¬TensorRTSSDÍÆÀí1.mp4
©¦  ©¸©¤©¸©¬TensorRTSSDÍÆÀí2.mp4
©À©¤µÚ10ÖÜ ¼ÆËãͼ±íʾ¼°ÓÅ»¯
©¦  ©À©¤WorkshopData-Free Knowledge Distillation for Deep Neural Networks
©¦  ©¦  ©¸©¬DataFreeKnowledgeDistillationforDeepNeuralNetworks.mp4
©¦  ©¸©¤¼ÆËãͼ±íʾ¼°ÓÅ»¯
©¦  ©¸©¤©À©¬¼ÆËãͼ±íʾ¼°ÓÅ»¯1.mp4
©¦  ©¸©¤©À©¬¼ÆËãͼ±íʾ¼°ÓÅ»¯2.mp4
©¦  ©¸©¤©À©¬¼ÆËãͼ±íʾ¼°ÓÅ»¯3.mp4
©¦  ©¸©¤©¸©¬¼ÆËãͼ±íʾ¼°ÓÅ»¯4.mp4
©À©¤µÚ11ÖÜ Attention-Based Seq2SeqÄ£ÐÍTacotron2-Lecture
©¦  ©À©¤1-Lecture Attention-Based Seq2SeqÄ£ÐÍTacotron2
©¦  ©¦  ©À©¬AttentionBasedSeq2SeqÄ£ÐÍTacotron21.mp4
©¦  ©¦  ©À©¬AttentionBasedSeq2SeqÄ£ÐÍTacotron22.mp4
©¦  ©¦  ©À©¬AttentionBasedSeq2SeqÄ£ÐÍTacotron23.mp4
©¦  ©¦  ©¸©¬AttentionBasedSeq2SeqÄ£ÐÍTacotron240.mp4
©¦  ©À©¤2-Workshop ˵»°ÈËÌØÕ÷ÌáÈ¡¼¼ÊõʵÏÖ¼°»·¾³´î½¨
©¦  ©¦  ©À©¬Ëµ»°ÈËÌØÕ÷ÌáÈ¡¼¼ÊõʵÏÖ¼°»·¾³´î½¨1.mp4
©¦  ©¦  ©¸©¬Ëµ»°ÈËÌØÕ÷ÌáÈ¡¼¼ÊõʵÏÖ¼°»·¾³´î½¨2.mp4
©¦  ©À©¤3-Workshop Rethinking the Smaller
©¦  ©¦  ©À©¬RethinkingtheSmaller1.mp4
©¦  ©¦  ©¸©¬RethinkingtheSmaller2.mp4
©¦  ©¸©¤4-Workshop ´úÂëÁ·Ï°
©¦  ©¸©¤©¸©¬´úÂëÁ·Ï°1.mp4
©À©¤µÚ12ÖÜ ÉùÂëÆ÷WaveÐòÁÐÉú³ÉË㷨ʵս-Lecture
©¦  ©À©¬PAYINGMOREATTENTIONTOATTENTIONIMPROVINGTHEPERFORMANCE.mp4
©¦  ©À©¬Tacotron2ºÏ³ÉÄ£ÐÍʵÏÖ1.mp4
©¦  ©À©¬Tacotron2ºÏ³ÉÄ£ÐÍʵÏÖ2.mp4
©¦  ©À©¬ÉùÂëÆ÷WaveÐòÁÐÉú³ÉË㷨ʵս1.mp4
©¦  ©À©¬ÉùÂëÆ÷WaveÐòÁÐÉú³ÉË㷨ʵս2.mp4
©¦  ©À©¬ÉùÂëÆ÷WaveÐòÁÐÉú³ÉË㷨ʵս3.mp4
©¦  ©¸©¬ÉùÂëÆ÷WaveÐòÁÐÉú³ÉË㷨ʵս4.mp4
©À©¤µÚ13ÖÜ tensorrtʵս
©¦  ©À©¬PerformanceGuaranteedNetworkAccelerationviaHighOrderResidualQuantization.mp4
©¦  ©À©¬tensorrtʵս1.mp4
©¦  ©À©¬tensorrtʵս2.mp4
©¦  ©À©¬tensorrtʵս3.mp4
©¦  ©À©¬tensorrtʵս4.mp4
©¦  ©¸©¬tensorrtʵս5.mp4
©À©¤µÚ14ÖÜ ÍÆ¼öϵͳ¸ÅÀÀ
©¦  ©À©¬SimpleResourceConstrainedStructureLearningofDeepNetworks.mp4
©¦  ©À©¬³£ÓÃAttentionµÄʵÏÖ1.mp4
©¦  ©À©¬³£ÓÃAttentionµÄʵÏÖ2.mp4
©¦  ©À©¬ÍƼöϵͳ¸ÅÀÀ1.mp4
©¦  ©À©¬ÍƼöϵͳ¸ÅÀÀ2.mp4
©¦  ©À©¬ÍƼöϵͳ¸ÅÀÀ3.mp4
©¦  ©À©¬ÍƼöϵͳ¸ÅÀÀ4.mp4
©¦  ©À©¬×÷Òµ½²½â1.mp4
©¦  ©¸©¬×÷Òµ½²½â2.mp4
©À©¤µÚ15ÖÜ ·Ö²¼Ê½²ÎÊý·þÎñÆ÷
©¦  ©À©¬HorovodfastandeasydistributeddeeplearninginTensorFlow.mp4
©¦  ©À©¬HorovodtensorflowÓ¦ÓÃ1.mp4
©¦  ©À©¬HorovodtensorflowÓ¦ÓÃ2.mp4
©¦  ©À©¬·Ö²¼Ê½²ÎÊý·þÎñÆ÷1.mp4
©¦  ©À©¬·Ö²¼Ê½²ÎÊý·þÎñÆ÷2.mp4
©¦  ©À©¬·Ö²¼Ê½²ÎÊý·þÎñÆ÷3.mp4
©¦  ©¸©¬·Ö²¼Ê½²ÎÊý·þÎñÆ÷4.mp4
©À©¤µÚ16ÖÜ ·Ö²¼Ê½ÍƼöϵͳʵս
©¦  ©À©¬DifactoÖÐSGDËã·¨µÄʵÏÖ1.mp4
©¦  ©À©¬DifactoÖÐSGDËã·¨µÄʵÏÖ2.mp4
©¦  ©À©¬DistributedTrainingStrategiesfortheStructuredPerceptron.mp4
©¦  ©À©¬Mixed Precision Training.mp4
©¦  ©À©¬·Ö²¼Ê½ÍƼöϵͳʵս1.mp4
©¦  ©À©¬·Ö²¼Ê½ÍƼöϵͳʵս2.mp4
©¦  ©À©¬·Ö²¼Ê½ÍƼöϵͳʵս3.mp4
©¦  ©À©¬·Ö²¼Ê½ÍƼöϵͳʵս4.mp4
©¦  ©À©¬·Ö²¼Ê½ÍƼöϵͳʵս5.mp4
©¦  ©À©¬Éî¶Èѧϰ¿ò¼Ü¼¼Êõ-1.mp4
©¦  ©À©¬Éî¶Èѧϰ¿ò¼Ü¼¼Êõ-2.mp4
©¦  ©À©¬Éî¶Èѧϰ¿ò¼Ü¼¼Êõ-3.mp4
©¦  ©¸©¬Éî¶Èѧϰ¿ò¼Ü¼¼Êõ-4.mp4
©À©¤µÚ17ÖÜ ÑµÁ·¼ÓËٸ߼¶¼¼Êõ1
©¦  ©À©¬Local SGD Converges Fast and Communicates Little.mp4
©¦  ©À©¬TNN¸ßЧ´æ´¢¹ÜÀí»úÖÆ-1.mp4
©¦  ©À©¬TNN¸ßЧ´æ´¢¹ÜÀí»úÖÆ-2.mp4
©¦  ©À©¬ÑµÁ·¼°Ô¤²â¼ÓËٸ߼¶¼¼Êõ-1.mp4
©¦  ©À©¬ÑµÁ·¼°Ô¤²â¼ÓËٸ߼¶¼¼Êõ-2.mp4
©¦  ©À©¬ÑµÁ·¼°Ô¤²â¼ÓËٸ߼¶¼¼Êõ-3.mp4
©¦  ©À©¬ÑµÁ·¼°Ô¤²â¼ÓËٸ߼¶¼¼Êõ-4.mp4
©¦  ©À©¬ÑµÁ·¼°Ô¤²â¼ÓËٸ߼¶¼¼Êõ-5.mp4
©¦  ©¸©¬ÑµÁ·¼°Ô¤²â¼ÓËٸ߼¶¼¼Êõ-6.mp4
©À©¤µÚ18ÖÜ ÑµÁ·¼°Ô¤²â¼ÓËٸ߼¶¼¼Êõ
©¦  ©À©¬Ä£ÐÍѹËõ¼¼ÊõʵÏÖ-1.mp4
©¦  ©À©¬Ä£ÐÍѹËõ¼¼ÊõʵÏÖ-2.mp4
©¦  ©À©¬ÑµÁ·¼ÓËٸ߼¶¼¼Êõ1-1.mp4
©¦  ©À©¬ÑµÁ·¼ÓËٸ߼¶¼¼Êõ1-2.mp4
©¦  ©À©¬ÑµÁ·¼ÓËٸ߼¶¼¼Êõ1-3.mp4
©¦  ©À©¬ÑµÁ·¼ÓËٸ߼¶¼¼Êõ1-4.mp4
©¦  ©À©¬ÑµÁ·¼ÓËٸ߼¶¼¼Êõ1-5.mp4
©¦  ©¸©¬ÑµÁ·¼ÓËٸ߼¶¼¼Êõ1-6.mp4
©¸©¤µÚ19ÖÜ ×îºóÒ»¿Î
©¸©¤©À©¬Fast Locality Sensitive Hashing for Beam Search on GPU.mp4
©¸©¤©À©¬×îºóÒ»¿Î-1.mp4
©¸©¤©¸©¬×îºóÒ»¿Î-2.mp4

Óοͣ¬Èç¹ûÄúÒª²é¿´±¾ÌûÒþ²ØÄÚÈÝÇë»Ø¸´


¸ü¶àÌû×ÓÍÆ¼ö

»Ø¸´

ʹÓõÀ¾ß ¾Ù±¨

0

Ö÷Ìâ

7174

»ØÌû

1Íò

»ý·Ö

ÌåÑéVIP

Rank: 7Rank: 7Rank: 7

»ý·Ö
14686
·¢±íÓÚ 2022-9-7 21:09:14 | ÏÔʾȫ²¿Â¥²ã
ÓоºÕù²ÅÓнø²½
»Ø¸´

ʹÓõÀ¾ß ¾Ù±¨

QQ|Archiver|ÊÖ»ú°æ|ü\Óü¿Æ¼¼Íø

GMT+8, 2025-11-30 06:48 , Processed in 0.187682 second(s), 26 queries .

Powered by Discuz! X3.4

© 2001-2023 Discuz! Team.

¿ìËٻظ´ ·µ»Ø¶¥²¿ ·µ»ØÁбí