ü\Óü¿Æ¼¼Íø

 ÕÒ»ØÃÜÂë
 Á¢¼´×¢²á
mito
²é¿´: 2244|»Ø¸´: 1

»úÆ÷ѧϰ¸ß¶Ë¿Î³Ì »úÆ÷¶ÁÐÄÊõÖ®Îı¾ÍÚ¾òÓë×ÔÈ»ÓïÑÔ´¦Àí Á¶Êý³É½ðÎı¾ÍÚ¾ò

[¸´ÖÆÁ´½Ó]

8Íò

Ö÷Ìâ

608

»ØÌû

27Íò

»ý·Ö

¹ÜÀíÔ±

Rank: 9Rank: 9Rank: 9

»ý·Ö
275170
QQ
·¢±íÓÚ 2017-12-19 08:26:04 | ÏÔʾȫ²¿Â¥²ã |ÔĶÁģʽ
¿Î³ÌÃû³Æ:   »úÆ÷ѧϰ¸ß¶Ë¿Î³Ì »úÆ÷¶ÁÐÄÊõÖ®Îı¾ÍÚ¾òÓë×ÔÈ»ÓïÑÔ´¦Àí Á¶Êý³É½ðÎı¾ÍÚ¾ò

¿Î³Ì¼ò½é:    


----------------------¿Î³ÌĿ¼------------------------------

©¦  ©À<1>
©¦  ©¦  ©ÀNLP01.pdf
©¦  ©¦  ©ÀNLP0ÊÓÆµ²¿·Ö
©¦  ©¦  ©Àͳ¼Æ×ÔÈ»ÓïÑÔ´¦Àí»ù´¡.pdf
©¦  ©¦  ©ÀÐÎʽÓïÑÔÓë×Ô¶¯»úÀíÂÛ.pdf
©¦  ©¦  ©À×ÔÈ»ÓïÑÔ´¦Àí×ÛÂÛ.pdf
©¦  ©¦  ©¸×Ú³ÉÇìͳ¼Æ×ÔÈ»ÓïÑÔ´¦Àí .pdf
©¦  ©À<2>
©¦  ©¦  ©ÀError-tolerant Finite State Recognition.pdf
©¦  ©¦  ©ÀNLP02.pdf
©¦  ©¦  ©ÀNLP02ÊÓÆµ²¿·Ö
©¦  ©¦  ©¸Tagging with Finite-State Transducers.pdf
©¦  ©À<3>
©¦  ©¦  ©Àicslp2002-srilm.pdf
©¦  ©¦  ©ÀNLP03.pdf
©¦  ©¦  ©¸NLP03ÊÓÆµ²¿·Ö
©¦  ©À<4>
©¦  ©¦  ©Àcrf-tutorial.pdf
©¦  ©¦  ©Ànips01-discriminativegenerative.pdf
©¦  ©¦  ©ÀNLP04.pdf
©¦  ©¦  ©ÀNLP04ÊÓÆµ²¿·Ö
©¦  ©¦  ©À¸ÅÂÊÂÛÓëÊýÀíͳ¼Æ µÚËİæ.pdf
©¦  ©¦  ©¸¸ÅÂÊͼģÐÍÔ­ÀíÓë¼¼Êõ.pdf
©¦  ©À<5>
©¦  ©¦  ©ÀEMËã·¨ÏêϸÀý×Ó¼°ÍƵ¼.pdf
©¦  ©¦  ©Àhhmm.pdf
©¦  ©¦  ©Àhtk.rar
©¦  ©¦  ©ÀHTK.zip
©¦  ©¦  ©ÀNLP05.pdf
©¦  ©¦  ©ÀNLP05ÊÓÆµ²¿·Ö
©¦  ©¦  ©¸The-EM-algorithm.pdf
©¦  ©À<6>
©¦  ©¦  ©ÀConditional Random Fields An Introduction.pdf
©¦  ©¦  ©Àcrf.pdf
©¦  ©¦  ©Àmaxent.pdf
©¦  ©¦  ©Àmaxent_adwait97.pdf
©¦  ©¦  ©ÀMaximum Entropy Markov Models for Information Extraction and Segmentation.pdf
©¦  ©¦  ©ÀNLP06.pdf
©¦  ©¦  ©ÀNLP06ÊÓÆµ²¿·Ö
©¦  ©¦  ©ÀÌõ¼þËæ»ú³¡×ÛÊö.pdf
©¦  ©¦  ©¸Í³¼ÆÑ§Ï°·½·¨.pdf
©¦  ©À<7>
©¦  ©¦  ©ÀActivePerl-5.22.1.2201-MSWin32-x86-64int-299574.msi
©¦  ©¦  ©Àconlleval.pl
©¦  ©¦  ©ÀCRF++-0.58.zip
©¦  ©¦  ©ÀCRF++¹¤¾ß°üʹÓýéÉÜ.ppt
©¦  ©¦  ©ÀCRF++ʹÓÃÖ¸ÄÏ.docx
©¦  ©¦  ©ÀNLP07.pdf
©¦  ©¦  ©ÀNLP07ÊÓÆµ²¿·Ö
©¦  ©¦  ©¸»ùÓÚÌõ¼þËæ»ú³¡µÄÖÐÎÄÈËÃûÐÔ±ðʶ±ðÑо¿.doc
©¦  ©À<8>
©¦  ©¦  ©ÀA Character-Based Joint Model for Chinese Word Segmentation.pdf
©¦  ©¦  ©ÀA Fast Decoder for Joint Word Segmentation and POS-Tagging Using a Single Discriminative Model.pdf
©¦  ©¦  ©ÀChinese Segmentation with aWord-Based Perceptron Algorithm.pdf
©¦  ©¦  ©ÀDiscriminative Training Methods for Hidden Markov Models Theory and Experiments with Perceptron Algorithms.pdf
©¦  ©¦  ©ÀIntegrating Generative and Discriminative Character-Based Models for Chinese Word Segmentation.pdf
©¦  ©¦  ©ÀNLP08.pdf
©¦  ©¦  ©ÀNLP08ÊÓÆµ²¿·Ö
©¦  ©¦  ©ÀSyntactic Processing Using the GeneralizedPerceptron and Beam Search.pdf
©¦  ©¦  ©ÀWhich is More Suitable for Chinese Word Segmentation the Generative Model or the Discriminative One.pdf
©¦  ©¦  ©À¶Ô×Ô¶¯·Ö´ÊµÄ·´Ë¼.pdf
©¦  ©¦  ©À»ùÓÚN-×î¶Ì·¾¶·½·¨µÄÖÐÎÄ´ÊÓï´Ö·ÖÄ£ÐÍ.pdf
©¦  ©¦  ©ÀÓÉ×Ö¹¹´Ê¡ª¡ªÖÐÎÄ·Ö´Êз½·¨.pdf
©¦  ©¦  ©ÀÖÐÎÄ·Ö´ÊÊ®Äê»Ø¹Ë.pdf
©¦  ©¦  ©¸ÖÐÎÄÎı¾×Ô¶¯·Ö´ÊºÍ±ê×¢_Áõ¿ªçø.pdf
©¦  ©À<9>
©¦  ©¦  ©ÀNLP09.pdf
©¦  ©¦  ©ÀNLP09ÊÓÆµ²¿·Ö
©¦  ©¦  ©¸ººÓïÎÊ´ðϵͳ¹Ø¼ü¼¼ÊõÑо¿_ÎâÓÑÕþ.pdf
©¦  ©À<·Ö´ÊËã·¨>
©¦  ©¦  ©ÀÓïÁÏ¿â.mp4
©¦  ©¦  ©ÀÓïÁϿ⽨Éè.pdf
©¦  ©¦  ©¸<icwb2-data>
©¦  ©À<10>
©¦  ©¦  ©ÀLDA¼°Gibbs-Sampling-yangliuy.pdf
©¦  ©¦  ©ÀLDAÊýѧ°ËØÔ.pdf
©¦  ©¦  ©ÀNLP10.pdf
©¦  ©¦  ©ÀNLP10ÊÓÆµ²¿·Ö
©¦  ©¦  ©ÀParameter estimation for text analysis.pdf
©¦  ©¦  ©ÀPLSA¼°EMËã·¨-yangliuy.pdf
©¦  ©¦  ©ÀUnsupervised Learning by Probabilistic Latent Semantic Analysis.pdf
©¦  ©¦  ©¸Ò»ÖÖ×ÔÊÊÓ¦´ÊÐÔ±ê×¢·½·¨.pdf
©¦  ©À<11>
©¦  ©¦  ©ÀA Sentimental Education Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts.pdf
©¦  ©¦  ©ÀJoint Sentiment Topic Model for Sentiment Analysis.pdf
©¦  ©¦  ©ÀNLP11.pdf
©¦  ©¦  ©ÀNLP11ÊÓÆµ²¿·Ö
©¦  ©¦  ©Àpcfgs.pdf
©¦  ©¦  ©ÀThumbs up Sentiment Classification using Machine Learning Techniques.pdf
©¦  ©¦  ©ÀUsing_appraisal_groups_for_sentiment_analysis.pdf
©¦  ©¦  ©¸µÚ11¿Î×÷ÒµËØ²Ä.zip
©¦  ©À<12>
©¦  ©¦  ©ÀA Hybrid Approach to Chinese Base Noun Phrase Chunking.pdf
©¦  ©¦  ©ÀCatching the Drift Probabilistic Content Models.pdf
©¦  ©¦  ©ÀCentroid-based summarization of multiple documents.pdf
©¦  ©¦  ©ÀCoreference Resolution Current Trends and Future Directions.pdf
©¦  ©¦  ©ÀFast Methods for Kernel-based Text Analysis.pdf
©¦  ©¦  ©ÀFirst-Order Probabilistic Models for Coreference Resolution.pdf
©¦  ©¦  ©ÀLATENT DIRICHLET LEARNING FOR DOCUMENT SUMMARIZATION.pdf
©¦  ©¦  ©ÀLayer-Based Dependency Parsing.pdf
©¦  ©¦  ©ÀNLP12.pdf
©¦  ©¦  ©ÀNLP12ÊÓÆµ²¿·Ö
©¦  ©¦  ©ÀNon-projective Dependency Parsing using Spanning Tree Algorithms.pdf
©¦  ©¦  ©ÀOnline Large-Margin Training of Dependency Parsers.pdf
©¦  ©¦  ©ÀSentence Fusion for Multidocument News Summarization.pdf
©¦  ©¦  ©ÀShallow Parsing with Conditional Random Fields.pdf
©¦  ©¦  ©ÀUse of  Support Vector Learning for Chunk Identification.pdf
©¦  ©¦  ©À»ùÓÚDZÔÚÓïÒå·ÖÎöµÄµ¥Îı¾×Ô¶¯ÕªÒª·½·¨Ñо¿.pdf
©¦  ©¦  ©À»ùÓÚDZÔÚÓïÒåË÷ÒýµÄÎı¾ÕªÒª·½·¨.PDF
©¦  ©¦  ©ÀÎĵµÕªÒª×÷ÒµËØ²Ä.zip
©¦  ©¦  ©¸Ö¸´úÏû½â×ÛÊö.pdf
©¦  ©À<13>
©¦  ©¦  ©ÀA STATISTICAL APPROACH TO MACHINE TRANSLATION.pdf
©¦  ©¦  ©ÀA Statistical MT Tutorial Workbook.pdf
©¦  ©¦  ©ÀA Survey on Question and Answering Systems.pdf
©¦  ©¦  ©ÀBuilding Watson.pdf
©¦  ©¦  ©ÀDiscriminative Training and Maximum Entropy Models for Statistical Machine Translation.pdf
©¦  ©¦  ©ÀErratum to A Statistical Approach to Machine Translation.pdf
©¦  ©¦  ©ÀHMM-Based Word Alignment in Statistical Translation.pdf
©¦  ©¦  ©ÀNLP13.pdf
©¦  ©¦  ©ÀNLP13a.mp4
©¦  ©¦  ©ÀNLP13b.mp4
©¦  ©¦  ©ÀNLP13c.mp4
©¦  ©¦  ©ÀNLP13d.mp4
©¦  ©¦  ©ÀNLP13e.mkv
©¦  ©¦  ©ÀNLP13f.mp4
©¦  ©¦  ©ÀNLP13g.mp4
©¦  ©¦  ©ÀNLP13h.mp4
©¦  ©¦  ©ÀStatistical Machine Translation -Koehn.pdf
©¦  ©¦  ©ÀThe Mathematics of Statistical Machine Translation Parameter Estimation.pdf
©¦  ©¦  ©À¹È¸è·­Òë.pdf
©¦  ©¦  ©À»ùÓÚFAQµÄOTCÎÊ´ðϵͳµÄÉè¼ÆÓëʵÏÖ.pdf
©¦  ©¦  ©ÀÁõȺ-»úÆ÷·­ÒëÔ­ÀíÓë·½·¨½²Òå(03)»ùÓڴʵÄͳ¼Æ»úÆ÷·­Òë·½·¨.pdf
©¸  ©¸  ©¸Î¢ÐÅÁÄÌì»úÆ÷ÅäÖÃÁ÷³Ì.pdf

ÏÂÔØµØÖ·£º
Óοͣ¬Èç¹ûÄúÒª²é¿´±¾ÌûÒþ²ØÄÚÈÝÇë»Ø¸´

¸ü¶àÌû×ÓÍÆ¼ö

»Ø¸´

ʹÓõÀ¾ß ¾Ù±¨

0

Ö÷Ìâ

2Íò

»ØÌû

4Íò

»ý·Ö

½ûÖ¹·ÃÎÊ

»ý·Ö
41607
·¢±íÓÚ 2021-10-1 20:27:43 | ÏÔʾȫ²¿Â¥²ã
Ìáʾ: ×÷Õß±»½ûÖ¹»òɾ³ý ÄÚÈÝ×Ô¶¯ÆÁ±Î
»Ø¸´

ʹÓõÀ¾ß ¾Ù±¨

QQ|Archiver|ÊÖ»ú°æ|ü\Óü¿Æ¼¼Íø

GMT+8, 2025-11-30 18:11 , Processed in 0.224306 second(s), 26 queries .

Powered by Discuz! X3.4

© 2001-2023 Discuz! Team.

¿ìËٻظ´ ·µ»Ø¶¥²¿ ·µ»ØÁбí