ü\Óü¿Æ¼¼Íø

 ÕÒ»ØÃÜÂë
 Á¢¼´×¢²á
mito
²é¿´: 599|»Ø¸´: 6

ÆßÔÂÔÚÏß»úÆ÷ѧϰ

[¸´ÖÆÁ´½Ó]

8Íò

Ö÷Ìâ

608

»ØÌû

27Íò

»ý·Ö

¹ÜÀíÔ±

Rank: 9Rank: 9Rank: 9

»ý·Ö
275170
QQ
·¢±íÓÚ 2022-6-9 17:30:02 | ÏÔʾȫ²¿Â¥²ã |ÔĶÁģʽ
34.ÆßÔÂÔÚÏß»úÆ÷ѧϰ
©À©¤ML_3Ô»úÆ÷ѧϰÔÚÏß°à
©¦  ©À©¤material
©¦  ©¦  ©À©¤4ÔÂ19ÈÕÍíµÄ·ÖÏí_»Æ¸ßÀÖ
©¦  ©¦  ©À©¬1.1΢»ý·ÖÓë¸ÅÂÊÂÛ.pdf
©¦  ©¦  ©À©¬1.΢»ý·ÖÓë¸ÅÂÊÂÛ.pdf
©¦  ©¦  ©À©¬10.1±´Ò¶Ë¹ÍøÂç.pdf
©¦  ©¦  ©À©¬11.Ö§³ÖÏòÁ¿»ú.pdf
©¦  ©¦  ©À©¬12.EMºÍGMM.pdf
©¦  ©¦  ©À©¬13.0Ö÷ÌâÄ£ÐÍ_Ԥϰ²ÄÁÏ.pdf
©¦  ©¦  ©À©¬13.Ö÷ÌâÄ£ÐÍ.pdf
©¦  ©¦  ©À©¬14.ÒþÂí¶û¿Æ·òÄ£ÐÍ.pdf
©¦  ©¦  ©À©¬2.1.1²ÎÊý¹À¼ÆµÄÆÀ¼Û×¼Ôò.pdf
©¦  ©¦  ©À©¬2.1²ÎÊý¹À¼ÆÓë¾ØÕóÔËËã.pdf
©¦  ©¦  ©À©¬2.²ÎÊý¹À¼ÆÓë¾ØÕóÔËËã.pdf
©¦  ©¦  ©À©¬2012.À.ͳ¼ÆÑ§Ï°·½·¨.pdf
©¦  ©¦  ©À©¬3.͹ÓÅ»¯.pdf
©¦  ©¦  ©À©¬4.1¹ãÒåÏßÐԻعéºÍ¶ÔżÓÅ»¯.pdf
©¦  ©¦  ©À©¬5.ÌݶÈϽµºÍÄâÅ£¶Ù.pdf
©¦  ©¦  ©À©¬6.×î´óìØÄ£ÐÍ.pdf
©¦  ©¦  ©À©¬7.¾ÛÀà.pdf
©¦  ©¦  ©À©¬8.¾ö²ßÊ÷ÓëËæ»úÉ­ÁÖ.pdf
©¦  ©¦  ©À©¬9.Adaboostµ¼ÂÛ.pdf
©¦  ©¦  ©À©¬9.±´Ò¶Ë¹ÍøÂç.ppt
©¦  ©¦  ©À©¬Adaboost.pdf
©¦  ©¦  ©À©¬Adaboost.py
©¦  ©¦  ©À©¬book11April2014.pdf
©¦  ©¦  ©À©¬CART.py
©¦  ©¦  ©À©¬Finding scientific topics.pdf
©¦  ©¦  ©À©¬kernel.py
©¦  ©¦  ©À©¬lda.py
©¦  ©¦  ©À©¬mcmc.pdf
©¦  ©¦  ©À©¬ÆßÔ½ÌÓýLDAѧԱ·ÖÏí_version2.pdf
©¦  ©¦  ©À©¬Í¹ÓÅ»¯-ÖÐÒë±¾(ɨÃè).pdf
©¦  ©¦  ©À©¬ÍƼöϵͳʵ¼ù.pdf
©¦  ©¦  ©¸©¬Ñ§Ï°ÂÊ´úÂë.cpp
©¦  ©¸©¤video
©¦  ©¸©¤©À©¤01 ΢»ý·ÖÓë¸ÅÂÊÂÛ»ù´¡
©¦  ©¸©¤©À©¤02 ²ÎÊý¹À¼ÆÓë¾ØÕóÔËËã»ù´¡
©¦  ©¸©¤©À©¤03 ͹ÓÅ»¯»ù´¡
©¦  ©¸©¤©À©¤04  ¹ãÒåÏßÐԻعéºÍ¶ÔżÓÅ»¯
©¦  ©¸©¤©À©¤05 Å£¶Ù¡¢ÄâÅ£¶Ù¡¢ÌݶÈϽµ¡¢Ëæ»úÌݶÈϽµ(SGD)
©¦  ©¸©¤©À©¤06 ìØ¡¢×î´óìØÄ£ÐÍMaxEnt¡¢¸Ä½øµÄµü´ú³ß¶È·¨IIS
©¦  ©¸©¤©À©¤07 ¾ÛÀࣨk-means¡¢²ã´Î¾ÛÀà¡¢Æ×¾ÛÀàµÈ£©
©¦  ©¸©¤©À©¤08 K½üÁÚ¡¢¾ö²ßÊ÷¡¢Ëæ»úÉ­ÁÖ(random decision forests)
©¦  ©¸©¤©À©¤09 Adaboost
©¦  ©¸©¤©À©¤10 ÆÓËØ±´Ò¶Ë¹¡¢Óë±´Ò¶Ë¹ÍøÂç
©¦  ©¸©¤©À©¤11 Ö§³ÖÏòÁ¿»ú£¨×î´ó¼ä¸ô·ÖÀà¡¢À­¸ñÀÊÈÕ³ËÖµ¡¢¶ÔżÎÊÌâ¡¢Ëðʧº¯Êý¡¢×îÓÅ»¯ÀíÂÛ¡¢SMO£©
©¦  ©¸©¤©À©¤12 EM¡¢»ìºÏ¸ß˹ģÐÍ
©¦  ©¸©¤©À©¤12 Ò·þÍÆ¼öϵͳ
©¦  ©¸©¤©À©¤13 Ö÷ÌâÄ£ÐÍ£¨¸ÅÂÊDZÓïÒå·ÖÎöPLSA¡¢Òþº¬µÒÀû¿ËÀ×·Ö²¼LDA£©
©¦  ©¸©¤©À©¤14.15 Âí¶û¿Æ·òÁ´¡¢ÒþÂí¶û¿É·òÄ£ÐÍHMM¡¢²ÉÑù
©¦  ©¸©¤©À©¤16 Âí¶û¿É·òËæ»ú³¡(Markov Random Field)¡¢Ìõ¼þËæ»ú³¡CRF
©¦  ©¸©¤©À©¤17 SVD¡¢Ö÷³É·Ö·ÖÎöPCA¡¢Òò×Ó·ÖÎö¡¢¶ÀÁ¢³É·Ö·ÖÎöICA
©¦  ©¸©¤©À©¤18 ¾í»ýÉñ¾­ÍøÂç(CNN)¡¢Éî¶ÈѧϰdzÎö
©¦  ©¸©¤©À©¤19 ±ä·ÖÍÆ¶Ï·½·¨
©¦  ©¸©¤©¸©¤20 ֪ʶͼÆ×
©À©¤ML_9Ô»úÆ÷ѧϰÔÚÏß°à
©¦  ©À©¤8_9_Ëæ»úÉ­ÁÖ_SVM
©¦  ©¦  ©À©¤css
©¦  ©¦  ©À©¤data
©¦  ©¦  ©À©¤images
©¦  ©¦  ©À©¤js
©¦  ©¦  ©À©¬practice_logistic.html
©¦  ©¦  ©À©¬practice_rf.html
©¦  ©¦  ©À©¬practice_svm.html
©¦  ©¦  ©À©¬rf.pdf
©¦  ©¦  ©¸©¬svm.pdf
©¦  ©À©¤»Ø¹é´úÂë
©¦  ©¦  ©À©¬d8.txt
©¦  ©¦  ©¸©¬Regression.py
©¦  ©À©¤»ù´¡²¹Ï°-¸ÅÂÊ-̨Íå´óѧҶ±ú³É
©¦  ©¦  ©À©¤µÚ°ËÖÜ
©¦  ©¦  ©À©¤µÚ¶þÖÜ
©¦  ©¦  ©À©¤µÚ¾ÅÖÜ
©¦  ©¦  ©À©¤µÚÁùÖÜ
©¦  ©¦  ©À©¤µÚÆßÖÜ
©¦  ©¦  ©À©¤µÚÈýÖÜ
©¦  ©¦  ©À©¤µÚËÄÖÜ
©¦  ©¦  ©À©¤µÚÎåÖÜ
©¦  ©¦  ©¸©¤¿ÎÌý²Òå
©¦  ©À©¤¿Î³Ìppt
©¦  ©¦  ©À©¬1.1΢»ý·ÖÓë¸ÅÂÊÂÛ.pdf
©¦  ©¦  ©À©¬1.΢»ý·ÖÓë¸ÅÂÊÂÛÔ­.pdf
©¦  ©¦  ©À©¬10.½µÎ¬.pdf
©¦  ©¦  ©À©¬11.¾ÛÀà.pdf
©¦  ©¦  ©À©¬12.ÌáÉý.pdf
©¦  ©¦  ©À©¬13.±´Ò¶Ë¹ÍøÂç.pdf
©¦  ©¦  ©À©¬14.EM.pdf
©¦  ©¦  ©À©¬15.Ö÷ÌâÄ£ÐÍ.pdf
©¦  ©¦  ©À©¬16.²ÉÑù_¸üÐÂ.pdf
©¦  ©¦  ©À©¬17.HMM.pdf
©¦  ©¦  ©À©¬18.Ìõ¼þËæ»ú³¡.pdf
©¦  ©¦  ©À©¬19_20_Éñ¾­ÍøÂç.pdf
©¦  ©¦  ©À©¬2.1ÊýÀíͳ¼ÆÓë²ÎÊý¹À¼Æ.pdf
©¦  ©¦  ©À©¬3.1¾ØÕóÔËËã.pdf
©¦  ©¦  ©À©¬4.͹ÓÅ»¯.pdf
©¦  ©¦  ©À©¬5.1»Ø¹é.pdf
©¦  ©¦  ©À©¬6.1ÌݶÈϽµºÍÄâÅ£¶Ù.pdf
©¦  ©¦  ©À©¬7.1×î´óìØÄ£ÐÍ.pdf
©¦  ©¦  ©À©¬8.1rf.pdf
©¦  ©¦  ©À©¬9.1svm.pdf
©¦  ©¦  ©À©¬cs229-notes1.pdf
©¦  ©¦  ©À©¬Ì½ÃØ2016УÕбÊÊÔÃæÊÔ.pdf
©¦  ©¦  ©À©¬Í¹ÓÅ»¯_CN.pdf
©¦  ©¦  ©¸©¬Í¹ÓÅ»¯_EN.pdf
©¦  ©À©¬0.ÑÌÓêÃÉÃÉ.mp4
©¦  ©À©¬1.΢»ý·ÖºÍ¸ÅÂÊÂÛ.mp4
©¦  ©À©¬10.½µÎ¬.mp4
©¦  ©À©¬11.¾ÛÀà.mp4
©¦  ©À©¬12.Boosting.mp4
©¦  ©À©¬13.±´Ò¶Ë¹ÍøÂç.mp4
©¦  ©À©¬14.EMËã·¨.mp4
©¦  ©À©¬14.EMËã·¨ÖØÖÆÍêÕû°æ.mp4
©¦  ©À©¬15.Ö÷ÌâÄ£ÐÍ.mp4
©¦  ©À©¬16.²ÉÑù.mp4
©¦  ©À©¬17.HMM.mp4
©¦  ©À©¬18.Ìõ¼þËæ»ú³¡.mp4
©¦  ©À©¬19.È˹¤Éñ¾­ÍøÂç.mp4
©¦  ©À©¬2.ÊýÀíͳ¼ÆÓë²ÎÊý¹À¼Æ.mp4
©¦  ©À©¬20.CNN&RNN.mp4
©¦  ©À©¬3.¾ØÕóÔËËã.mp4
©¦  ©À©¬4.͹ÓÅ»¯.mp4
©¦  ©À©¬5.»Ø¹é.mp4
©¦  ©À©¬6.ÌݶÈϽµºÍÄâÅ£¶Ù.mp4
©¦  ©À©¬7.×î´óìØÄ£ÐÍ.mp4
©¦  ©À©¬8.Ëæ»úÉ­ÁÖ.mp4
©¦  ©¸©¬9.Ö§³ÖÏòÁ¿»ú.mp4
©À©¤ML_»úÆ÷ѧϰÆäËû×ÊÁÏ
©¦  ©À©¤2014˹̹¸£´óѧ»úÆ÷ѧϰmkvÊÓÆµ
©¦  ©¦  ©À©¤pdf
©¦  ©¦  ©À©¤ppt
©¦  ©¦  ©À©¤»úÆ÷ѧϰ¿Î³Ì2014Ô´´úÂë
©¦  ©¦  ©À©¤½Ì³ÌºÍ±Ê¼Ç
©¦  ©¦  ©À©¤ÍƼö²¥·ÅÆ÷
©¦  ©¦  ©À©¤ÍøÒ×ÊÓÆµ½Ì³Ì
©¦  ©¦  ©À©¬1 - 1 - Welcome (7 min).mkv
©¦  ©¦  ©À©¬1 - 2 - What is Machine Learning_ (7 min).mkv
©¦  ©¦  ©À©¬1 - 3 - Supervised Learning (12 min).mkv
©¦  ©¦  ©À©¬1 - 4 - Unsupervised Learning (14 min).mkv
©¦  ©¦  ©À©¬10 - 1 - Deciding What to Try Next (6 min).mkv
©¦  ©¦  ©À©¬10 - 2 - Evaluating a Hypothesis (8 min).mkv
©¦  ©¦  ©À©¬10 - 3 - Model Selection and Train_Validation_Test Sets (12 min).mkv
©¦  ©¦  ©À©¬10 - 4 - Diagnosing Bias vs. Variance (8 min).mkv
©¦  ©¦  ©À©¬10 - 5 - Regularization and Bias_Variance (11 min).mkv
©¦  ©¦  ©À©¬10 - 6 - Learning Curves (12 min).mkv
©¦  ©¦  ©À©¬10 - 7 - Deciding What to Do Next Revisited (7 min).mkv
©¦  ©¦  ©À©¬11 - 1 - Prioritizing What to Work On (10 min).mkv
©¦  ©¦  ©À©¬11 - 2 - Error Analysis (13 min).mkv
©¦  ©¦  ©À©¬11 - 3 - Error Metrics for Skewed Classes (12 min).mkv
©¦  ©¦  ©À©¬11 - 4 - Trading Off Precision and Recall (14 min).mkv
©¦  ©¦  ©À©¬11 - 5 - Data For Machine Learning (11 min).mkv
©¦  ©¦  ©À©¬12 - 1 - Optimization Objective (15 min).mkv
©¦  ©¦  ©À©¬12 - 2 - Large Margin Intuition (11 min).mkv
©¦  ©¦  ©À©¬12 - 3 - Mathematics Behind Large Margin Classification (Optional) (20 min).mkv
©¦  ©¦  ©À©¬12 - 4 - Kernels I (16 min).mkv
©¦  ©¦  ©À©¬12 - 5 - Kernels II (16 min).mkv
©¦  ©¦  ©À©¬12 - 6 - Using An SVM (21 min).mkv
©¦  ©¦  ©À©¬13 - 1 - Unsupervised Learning_ Introduction (3 min).mkv
©¦  ©¦  ©À©¬13 - 2 - K-Means Algorithm (13 min).mkv
©¦  ©¦  ©À©¬13 - 3 - Optimization Objective (7 min)(1).mkv
©¦  ©¦  ©À©¬13 - 3 - Optimization Objective (7 min).mkv
©¦  ©¦  ©À©¬13 - 4 - Random Initialization (8 min).mkv
©¦  ©¦  ©À©¬13 - 5 - Choosing the Number of Clusters (8 min).mkv
©¦  ©¦  ©À©¬14 - 1 - Motivation I_ Data Compression (10 min).mkv
©¦  ©¦  ©À©¬14 - 2 - Motivation II_ Visualization (6 min).mkv
©¦  ©¦  ©À©¬14 - 3 - Principal Component Analysis Problem Formulation (9 min).mkv
©¦  ©¦  ©À©¬14 - 4 - Principal Component Analysis Algorithm (15 min).mkv
©¦  ©¦  ©À©¬14 - 5 - Choosing the Number of Principal Components (11 min).mkv
©¦  ©¦  ©À©¬14 - 6 - Reconstruction from Compressed Representation (4 min).mkv
©¦  ©¦  ©À©¬14 - 7 - Advice for Applying PCA (13 min).mkv
©¦  ©¦  ©À©¬15 - 1 - Problem Motivation (8 min).mkv
©¦  ©¦  ©À©¬15 - 2 - Gaussian Distribution (10 min).mkv
©¦  ©¦  ©À©¬15 - 3 - Algorithm (12 min).mkv
©¦  ©¦  ©À©¬15 - 4 - Developing and Evaluating an Anomaly Detection System (13 min).mkv
©¦  ©¦  ©À©¬15 - 5 - Anomaly Detection vs. Supervised Learning (8 min).mkv
©¦  ©¦  ©À©¬15 - 6 - Choosing What Features to Use (12 min).mkv
©¦  ©¦  ©À©¬15 - 7 - Multivariate Gaussian Distribution (Optional) (14 min).mkv
©¦  ©¦  ©À©¬15 - 8 - Anomaly Detection using the Multivariate Gaussian Distribution (Optional) (14 min).mkv
©¦  ©¦  ©À©¬16 - 1 - Problem Formulation (8 min).mkv
©¦  ©¦  ©À©¬16 - 2 - Content Based Recommendations (15 min).mkv
©¦  ©¦  ©À©¬16 - 3 - Collaborative Filtering (10 min).mkv
©¦  ©¦  ©À©¬16 - 4 - Collaborative Filtering Algorithm (9 min).mkv
©¦  ©¦  ©À©¬16 - 5 - Vectorization_ Low Rank Matrix Factorization (8 min).mkv
©¦  ©¦  ©À©¬16 - 6 - Implementational Detail_ Mean Normalization (9 min).mkv
©¦  ©¦  ©À©¬17 - 1 - Learning With Large Datasets (6 min).mkv
©¦  ©¦  ©À©¬17 - 2 - Stochastic Gradient Descent (13 min).mkv
©¦  ©¦  ©À©¬17 - 3 - Mini-Batch Gradient Descent (6 min).mkv
©¦  ©¦  ©À©¬17 - 4 - Stochastic Gradient Descent Convergence (12 min).mkv
©¦  ©¦  ©À©¬17 - 5 - Online Learning (13 min).mkv
©¦  ©¦  ©À©¬17 - 6 - Map Reduce and Data Parallelism (14 min).mkv
©¦  ©¦  ©À©¬18 - 1 - Problem Description and Pipeline (7 min).mkv
©¦  ©¦  ©À©¬18 - 2 - Sliding Windows (15 min).mkv
©¦  ©¦  ©À©¬18 - 3 - Getting Lots of Data and Artificial Data (16 min).mkv
©¦  ©¦  ©À©¬18 - 4 - Ceiling Analysis_ What Part of the Pipeline to Work on Next (14 min).mkv
©¦  ©¦  ©À©¬19 - 1 - Summary and Thank You (5 min).mkv
©¦  ©¦  ©À©¬2 - 1 - Model Representation (8 min).mkv
©¦  ©¦  ©À©¬2 - 2 - Cost Function (8 min).mkv
©¦  ©¦  ©À©¬2 - 3 - Cost Function - Intuition I (11 min).mkv
©¦  ©¦  ©À©¬2 - 4 - Cost Function - Intuition II (9 min).mkv
©¦  ©¦  ©À©¬2 - 5 - Gradient Descent (11 min).mkv
©¦  ©¦  ©À©¬2 - 6 - Gradient Descent Intuition (12 min).mkv
©¦  ©¦  ©À©¬2 - 7 - GradientDescentForLinearRegression  (6 min).mkv
©¦  ©¦  ©À©¬2 - 8 - What_s Next (6 min).mkv
©¦  ©¦  ©À©¬3 - 1 - Matrices and Vectors (9 min).mkv
©¦  ©¦  ©À©¬3 - 2 - Addition and Scalar Multiplication (7 min).mkv
©¦  ©¦  ©À©¬3 - 3 - Matrix Vector Multiplication (14 min).mkv
©¦  ©¦  ©À©¬3 - 4 - Matrix Matrix Multiplication (11 min).mkv
©¦  ©¦  ©À©¬3 - 5 - Matrix Multiplication Properties (9 min).mkv
©¦  ©¦  ©À©¬3 - 6 - Inverse and Transpose (11 min).mkv
©¦  ©¦  ©À©¬4 - 1 - Multiple Features (8 min).mkv
©¦  ©¦  ©À©¬4 - 2 - Gradient Descent for Multiple Variables (5 min).mkv
©¦  ©¦  ©À©¬4 - 3 - Gradient Descent in Practice I - Feature Scaling (9 min).mkv
©¦  ©¦  ©À©¬4 - 4 - Gradient Descent in Practice II - Learning Rate (9 min).mkv
©¦  ©¦  ©À©¬4 - 5 - Features and Polynomial Regression (8 min).mkv
©¦  ©¦  ©À©¬4 - 6 - Normal Equation (16 min).mkv
©¦  ©¦  ©À©¬4 - 7 - Normal Equation Noninvertibility (Optional) (6 min).mkv
©¦  ©¦  ©À©¬5 - 1 - Basic Operations (14 min).mkv
©¦  ©¦  ©À©¬5 - 2 - Moving Data Around (16 min).mkv
©¦  ©¦  ©À©¬5 - 3 - Computing on Data (13 min).mkv
©¦  ©¦  ©À©¬5 - 4 - Plotting Data (10 min).mkv
©¦  ©¦  ©À©¬5 - 5 - Control Statements_ for, while, if statements (13 min).mkv
©¦  ©¦  ©À©¬5 - 6 - Vectorization (14 min).mkv
©¦  ©¦  ©À©¬5 - 7 - Working on and Submitting Programming Exercises (4 min).mkv
©¦  ©¦  ©À©¬6 - 1 - Classification (8 min).mkv
©¦  ©¦  ©À©¬6 - 2 - Hypothesis Representation (7 min).mkv
©¦  ©¦  ©À©¬6 - 3 - Decision Boundary (15 min).mkv
©¦  ©¦  ©À©¬6 - 4 - Cost Function (11 min).mkv
©¦  ©¦  ©À©¬6 - 5 - Simplified Cost Function and Gradient Descent (10 min).mkv
©¦  ©¦  ©À©¬6 - 6 - Advanced Optimization (14 min).mkv
©¦  ©¦  ©À©¬6 - 7 - Multiclass Classification_ One-vs-all (6 min).mkv
©¦  ©¦  ©À©¬7 - 1 - The Problem of Overfitting (10 min).mkv
©¦  ©¦  ©À©¬7 - 2 - Cost Function (10 min).mkv
©¦  ©¦  ©À©¬7 - 3 - Regularized Linear Regression (11 min).mkv
©¦  ©¦  ©À©¬7 - 4 - Regularized Logistic Regression (9 min).mkv
©¦  ©¦  ©À©¬8 - 1 - Non-linear Hypotheses (10 min).mkv
©¦  ©¦  ©À©¬8 - 2 - Neurons and the Brain (8 min).mkv
©¦  ©¦  ©À©¬8 - 3 - Model Representation I (12 min).mkv
©¦  ©¦  ©À©¬8 - 4 - Model Representation II (12 min).mkv
©¦  ©¦  ©À©¬8 - 5 - Examples and Intuitions I (7 min).mkv
©¦  ©¦  ©À©¬8 - 6 - Examples and Intuitions II (10 min).mkv
©¦  ©¦  ©À©¬8 - 7 - Multiclass Classification (4 min).mkv
©¦  ©¦  ©À©¬9 - 1 - Cost Function (7 min).mkv
©¦  ©¦  ©À©¬9 - 2 - Backpropagation Algorithm (12 min).mkv
©¦  ©¦  ©À©¬9 - 3 - Backpropagation Intuition (13 min).mkv
©¦  ©¦  ©À©¬9 - 4 - Implementation Note_ Unrolling Parameters (8 min).mkv
©¦  ©¦  ©À©¬9 - 5 - Gradient Checking (12 min).mkv
©¦  ©¦  ©À©¬9 - 6 - Random Initialization (7 min).mkv
©¦  ©¦  ©À©¬9 - 7 - Putting It Together (14 min).mkv
©¦  ©¦  ©¸©¬9 - 8 - Autonomous Driving (7 min).mkv
©¦  ©À©¤»úÆ÷ѧϰµ¼ÂÛ_42_ÉϺ£½»´ó(ÕÅÖ¾»ª)
©¦  ©¦  ©À©¬1 »ù±¾¸ÅÄî.mp4
©¦  ©¦  ©À©¬10 ºË¶¨Òå.mp4
©¦  ©¦  ©À©¬11 Õý¶¨ºËÐÔÖÊ.mp4
©¦  ©¦  ©À©¬12 Õý¶¨ºËÓ¦ÓÃ.mp4
©¦  ©¦  ©À©¬13 ºËÖ÷Ôª·ÖÎö.mp4
©¦  ©¦  ©À©¬14 Ö÷Ôª·ÖÎö.mp4
©¦  ©¦  ©À©¬15 Ö÷×ø±ê·ÖÎö.mp4
©¦  ©¦  ©À©¬16 ÆÚÍû×î´óËã·¨.mp4
©¦  ©¦  ©À©¬17 ¸ÅÂÊPCA.mp4
©¦  ©¦  ©À©¬18 ×î´óËÆÈ»¹À¼Æ·½·¨.mp4
©¦  ©¦  ©À©¬19 EMËã·¨ÊÕÁ²ÐÔ.mp4
©¦  ©¦  ©À©¬2 Ëæ»úÏòÁ¿.mp4
©¦  ©¦  ©À©¬20 MDS·½·¨.mp4
©¦  ©¦  ©À©¬21 MDSÖмӵ㷽·¨.mp4
©¦  ©¦  ©À©¬22 ¾ØÕó´Îµ¼Êý.mp4
©¦  ©¦  ©À©¬23 ¾ØÕó·¶Êý.mp4
©¦  ©¦  ©À©¬24 ´Îµ¼Êý.mp4
©¦  ©¦  ©À©¬25 spectral clustering.mp4
©¦  ©¦  ©À©¬26 K-means algorithm.mp4
©¦  ©¦  ©À©¬27 Matr-x Completion.mp4
©¦  ©¦  ©À©¬28 FisherÅбð·ÖÎö.mp4
©¦  ©¦  ©À©¬29 Æ×¾ÛÀà1 .mp4
©¦  ©¦  ©À©¬3 Ëæ»úÏòÁ¿ÐÔÖÊ.mp4
©¦  ©¦  ©À©¬30 Æ×¾ÛÀà2.mp4
©¦  ©¦  ©À©¬31 Computational Methods1.mp4
©¦  ©¦  ©À©¬32 Computational Methods2.mp4
©¦  ©¦  ©À©¬33 Fisher Discriminant Analysis.mp4
©¦  ©¦  ©À©¬34 Kernel FDA.mp4
©¦  ©¦  ©À©¬35 Linear classification1.mp4
©¦  ©¦  ©À©¬36 Linear classification2.mp4
©¦  ©¦  ©À©¬37 Naive Bayes·½·¨.mp4
©¦  ©¦  ©À©¬38 Support Vector Machines1.mp4
©¦  ©¦  ©À©¬39 Support Vector Machines2.mp4
©¦  ©¦  ©À©¬4 ¶àÔª¸ß˹·Ö²¼.mp4
©¦  ©¦  ©À©¬40 SVM.mp4
©¦  ©¦  ©À©¬41 Boosting1.mp4
©¦  ©¦  ©À©¬42 Boosting2.mp4
©¦  ©¦  ©À©¬5 ·Ö²¼ÐÔÖÊ.mp4
©¦  ©¦  ©À©¬6 Ìõ¼þÆÚÍû.mp4
©¦  ©¦  ©À©¬7 ¶àÏîʽ·Ö²¼.mp4
©¦  ©¦  ©À©¬8 ¶àÔª¸ß˹·Ö²¼¼°Ó¦ÓÃ.mp4
©¦  ©¦  ©¸©¬9 ½¥½üÐÔÖÊ.mp4
©¦  ©À©¤»úÆ÷ѧϰ»ùʯ_¹úÁ¢Ì¨Íå´óѧ(ÁÖÐùÌï)
©¦  ©¦  ©À©¬1 - 1 - Course Introduction (10-58)(1).mp4
©¦  ©¦  ©À©¬1 - 2 - What is Machine Learning (18-28).mp4
©¦  ©¦  ©À©¬1 - 3 - Applications of Machine Learning (18-56)(1).mp4
©¦  ©¦  ©À©¬1 - 4 - Components of Machine Learning (11-45)(1).mp4
©¦  ©¦  ©À©¬1 - 5 - Machine Learning and Other Fields (10-21)(1).mp4
©¦  ©¦  ©À©¬10 - 1 - Logistic Regression Problem (14-33).mp4
©¦  ©¦  ©À©¬10 - 2 - Logistic Regression Error (15-58).mp4
©¦  ©¦  ©À©¬10 - 3 - Gradient of Logistic Regression Error (15-38).mp4
©¦  ©¦  ©À©¬10 - 4 - Gradient Descent (19-18)(1).mp4
©¦  ©¦  ©À©¬11 - 1 - Linear Models for Binary Classification (21-35).mp4
©¦  ©¦  ©À©¬11 - 2 - Stochastic Gradient Descent (11-39).mp4
©¦  ©¦  ©À©¬11 - 3 - Multiclass via Logistic Regression (14-18).mp4
©¦  ©¦  ©À©¬11 - 4 - Multiclass via Binary Classification (11-35).mp4
©¦  ©¦  ©À©¬12 - 1 - Quadratic Hypothesis (23-47).mp4
©¦  ©¦  ©À©¬12 - 2 - Nonlinear Transform (09-52).mp4
©¦  ©¦  ©À©¬12 - 3 - Price of Nonlinear Transform (15-37).mp4
©¦  ©¦  ©À©¬12 - 4 - Structured Hypothesis Sets (09-36).mp4
©¦  ©¦  ©À©¬13 - 1 - What is Overfitting- (10-45).mp4
©¦  ©¦  ©À©¬13 - 2 - The Role of Noise and Data Size (13-36).mp4
©¦  ©¦  ©À©¬13 - 3 - Deterministic Noise (14-07).mp4
©¦  ©¦  ©À©¬13 - 4 - Dealing with Overfitting (10-49).mp4
©¦  ©¦  ©À©¬14 - 1 - Regularized Hypothesis Set (19-16).mp4
©¦  ©¦  ©À©¬14 - 2 - Weight Decay Regularization (24-08).mp4
©¦  ©¦  ©À©¬14 - 3 - Regularization and VC Theory (08-15).mp4
©¦  ©¦  ©À©¬14 - 4 - General Regularizers (13-28).mp4
©¦  ©¦  ©À©¬15 - 1 - Model Selection Problem (16-00).mp4
©¦  ©¦  ©À©¬15 - 2 - Validation (13-24).mp4
©¦  ©¦  ©À©¬15 - 3 - Leave-One-Out Cross Validation (16-06).mp4
©¦  ©¦  ©À©¬15 - 4 - V-Fold Cross Validation (10-41).mp4
©¦  ©¦  ©À©¬16 - 1 - Occam-s Razor (10-08).mp4
©¦  ©¦  ©À©¬16 - 2 - Sampling Bias (11-50).mp4
©¦  ©¦  ©À©¬16 - 3 - Data Snooping (12-28).mp4
©¦  ©¦  ©À©¬16 - 4 - Power of Three (08-49).mp4
©¦  ©¦  ©À©¬2 - 1 - Perceptron Hypothesis Set (15-42).mp4
©¦  ©¦  ©À©¬2 - 2 - Perceptron Learning Algorithm (PLA) (19-46).mp4
©¦  ©¦  ©À©¬2 - 3 - Guarantee of PLA (12-37).mp4
©¦  ©¦  ©À©¬2 - 4 - Non-Separable Data (12-55).mp4
©¦  ©¦  ©À©¬3 - 1 - Learning with Different Output Space (17-26).mp4
©¦  ©¦  ©À©¬3 - 2 - Learning with Different Data Label (18-12).mp4
©¦  ©¦  ©À©¬3 - 3 - Learning with Different Protocol (11-09).mp4
©¦  ©¦  ©À©¬3 - 4 - Learning with Different Input Space (14-13).mp4
©¦  ©¦  ©À©¬4 - 1 - Learning is Impossible- (13-32).mp4
©¦  ©¦  ©À©¬4 - 2 - Probability to the Rescue (11-33).mp4
©¦  ©¦  ©À©¬4 - 3 - Connection to Learning (16-46).mp4
©¦  ©¦  ©À©¬4 - 4 - Connection to Real Learning (18-06).mp4
©¦  ©¦  ©À©¬5 - 1 - Recap and Preview (13-44).mp4
©¦  ©¦  ©À©¬5 - 2 - Effective Number of Lines (15-26).mp4
©¦  ©¦  ©À©¬5 - 3 - Effective Number of Hypotheses (16-17).mp4
©¦  ©¦  ©À©¬5 - 4 - Break Point (07-44).mp4
©¦  ©¦  ©À©¬6 - 1 - Restriction of Break Point (14-18).mp4
©¦  ©¦  ©À©¬6 - 2 - Bounding Function- Basic Cases (06-56).mp4
©¦  ©¦  ©À©¬6 - 3 - Bounding Function- Inductive Cases (14-47).mp4
©¦  ©¦  ©À©¬6 - 4 - A Pictorial Proof (16-01).mp4
©¦  ©¦  ©À©¬7 - 1 - Definition of VC Dimension (13-10).mp4
©¦  ©¦  ©À©¬7 - 2 - VC Dimension of Perceptrons (13-27).mp4
©¦  ©¦  ©À©¬7 - 3 - Physical Intuition of VC Dimension (6-11).mp4
©¦  ©¦  ©À©¬7 - 4 - Interpreting VC Dimension (17-13).mp4
©¦  ©¦  ©À©¬8 - 1 - Noise and Probabilistic Target (17-01).mp4
©¦  ©¦  ©À©¬8 - 2 - Error Measure (15-10).mp4
©¦  ©¦  ©À©¬8 - 3 - Algorithmic Error Measure (13-46).mp4
©¦  ©¦  ©À©¬8 - 4 - Weighted Classification (16-54).mp4
©¦  ©¦  ©À©¬9 - 1 - Linear Regression Problem (10-08).mp4
©¦  ©¦  ©À©¬9 - 2 - Linear Regression Algorithm (20-03).mp4
©¦  ©¦  ©À©¬9 - 3 - Generalization Issue (20-34).mp4
©¦  ©¦  ©¸©¬9 - 4 - Linear Regression for Binary Classification (11-23).mp4
©¦  ©À©¤»úÆ÷ѧϰ¼¼·¨_¹úÁ¢Ì¨Íå´óѧ(ÁÖÐùÌï)
©¦  ©¦  ©À©¤01_Linear_Support_Vector_Machine
©¦  ©¦  ©À©¤02_Dual_Support_Vector_Machine
©¦  ©¦  ©À©¤03_Kernel_Support_Vector_Machine
©¦  ©¦  ©À©¤04_Soft-Margin_Support_Vector_Machine
©¦  ©¦  ©À©¤05_Kernel_Logistic_Regression
©¦  ©¦  ©À©¤06_Support_Vector_Regression
©¦  ©¦  ©À©¤07_Blending_and_Bagging
©¦  ©¦  ©À©¤08_Adaptive_Boosting
©¦  ©¦  ©À©¤09_Decision_Tree
©¦  ©¦  ©À©¤10_Random_Forest
©¦  ©¦  ©À©¤11_Gradient_Boosted_Decision_Tree
©¦  ©¦  ©À©¤12_Neural_Network
©¦  ©¦  ©À©¤13_Deep_Learning
©¦  ©¦  ©À©¤14_Radial_Basis_Function_Network
©¦  ©¦  ©À©¤15_Matrix_Factorization
©¦  ©¦  ©¸©¤16_Finale
©¦  ©À©¤Á¶Êý³É½ð-»úÆ÷ѧϰ
©¦  ©¦  ©À©¤µÚ1¿Î »úÆ÷ѧϰ¸ÅÂÛ
©¦  ©¦  ©À©¤µÚ2¿Î ÏßÐԻعéÓëLogistic¡£°¸Àý£ºµç×ÓÉÌÎñÒµ¼¨Ô¤²â
©¦  ©¦  ©À©¤µÚ3¿Î Áë»Ø¹é£¬Lasso£¬±äÁ¿Ñ¡Ôñ¼¼Êõ¡£°¸Àý£º¿­ÈöÃÜÂëÆÆÒë
©¦  ©¦  ©À©¤×ÊÁÏ
©¦  ©¦  ©À©¬»úÆ÷ѧϰµÚ10ÖÜ.rar
©¦  ©¦  ©À©¬»úÆ÷ѧϰµÚ11ÖÜ.rar
©¦  ©¦  ©À©¬»úÆ÷ѧϰµÚ4ÖÜ.rar
©¦  ©¦  ©À©¬»úÆ÷ѧϰµÚ5ÖÜ.rar
©¦  ©¦  ©À©¬»úÆ÷ѧϰµÚ6ÖÜ.rar
©¦  ©¦  ©À©¬»úÆ÷ѧϰµÚ7ÖÜ.rar
©¦  ©¦  ©À©¬»úÆ÷ѧϰµÚ8ÖÜ.rar
©¦  ©¦  ©À©¬»úÆ÷ѧϰµÚ9ÖÜ.rar
©¦  ©¦  ©¸©¬½âѹÃÜÂë.TXT
©¦  ©À©¤ÁúÐǼƻ®_»úÆ÷ѧ
©¦  ©¦  ©À©¬Lecture01£¨¸ü¶àÊÓÆµ×ÊÁϹØ×¢Î¢ÐŹ«Öںš¾²ËÄñÒª·É¡¿£©.mp4
©¦  ©¦  ©À©¬Lecture02£¨¸ü¶àÊÓÆµ×ÊÁϹØ×¢Î¢ÐŹ«Öںš¾²ËÄñÒª·É¡¿£©.mp4
©¦  ©¦  ©À©¬Lecture03£¨¸ü¶àÊÓÆµ×ÊÁϹØ×¢Î¢ÐŹ«Öںš¾²ËÄñÒª·É¡¿£©.mp4
©¦  ©¦  ©À©¬Lecture04£¨¸ü¶àÊÓÆµ×ÊÁϹØ×¢Î¢ÐŹ«Öںš¾²ËÄñÒª·É¡¿£©.mp4
©¦  ©¦  ©À©¬Lecture05£¨¸ü¶àÊÓÆµ×ÊÁϹØ×¢Î¢ÐŹ«Öںš¾²ËÄñÒª·É¡¿£©.mp4
©¦  ©¦  ©À©¬Lecture06£¨¸ü¶àÊÓÆµ×ÊÁϹØ×¢Î¢ÐŹ«Öںš¾²ËÄñÒª·É¡¿£©.mp4
©¦  ©¦  ©À©¬Lecture07£¨¸ü¶àÊÓÆµ×ÊÁϹØ×¢Î¢ÐŹ«Öںš¾²ËÄñÒª·É¡¿£©.mp4
©¦  ©¦  ©À©¬Lecture08£¨¸ü¶àÊÓÆµ×ÊÁϹØ×¢Î¢ÐŹ«Öںš¾²ËÄñÒª·É¡¿£©.mp4
©¦  ©¦  ©À©¬Lecture09£¨¸ü¶àÊÓÆµ×ÊÁϹØ×¢Î¢ÐŹ«Öںš¾²ËÄñÒª·É¡¿£©.mp4
©¦  ©¦  ©À©¬Lecture10£¨¸ü¶àÊÓÆµ×ÊÁϹØ×¢Î¢ÐŹ«Öںš¾²ËÄñÒª·É¡¿£©.mp4
©¦  ©¦  ©À©¬Lecture11£¨¸ü¶àÊÓÆµ×ÊÁϹØ×¢Î¢ÐŹ«Öںš¾²ËÄñÒª·É¡¿£©.mp4
©¦  ©¦  ©À©¬Lecture12£¨¸ü¶àÊÓÆµ×ÊÁϹØ×¢Î¢ÐŹ«Öںš¾²ËÄñÒª·É¡¿£©.mp4
©¦  ©¦  ©À©¬Lecture13£¨¸ü¶àÊÓÆµ×ÊÁϹØ×¢Î¢ÐŹ«Öںš¾²ËÄñÒª·É¡¿£©.mp4
©¦  ©¦  ©À©¬Lecture14£¨¸ü¶àÊÓÆµ×ÊÁϹØ×¢Î¢ÐŹ«Öںš¾²ËÄñÒª·É¡¿£©.mp4
©¦  ©¦  ©À©¬Lecture15£¨¸ü¶àÊÓÆµ×ÊÁϹØ×¢Î¢ÐŹ«Öںš¾²ËÄñÒª·É¡¿£©.mp4
©¦  ©¦  ©À©¬Lecture16£¨¸ü¶àÊÓÆµ×ÊÁϹØ×¢Î¢ÐŹ«Öںš¾²ËÄñÒª·É¡¿£©.mp4
©¦  ©¦  ©À©¬Lecture17£¨¸ü¶àÊÓÆµ×ÊÁϹØ×¢Î¢ÐŹ«Öںš¾²ËÄñÒª·É¡¿£©.mp4
©¦  ©¦  ©À©¬Lecture18£¨¸ü¶àÊÓÆµ×ÊÁϹØ×¢Î¢ÐŹ«Öںš¾²ËÄñÒª·É¡¿£©.mp4
©¦  ©¦  ©À©¬Lecture19_r£¨¸ü¶àÊÓÆµ×ÊÁϹØ×¢Î¢ÐŹ«Öںš¾²ËÄñÒª·É¡¿£©.mp4
©¦  ©¦  ©¸©¬ÏÂÔØÖ®Ç°±Ø¿´£¡¸ü¶àÊÓÆµ×ÊÁÏÏÂÔØÄ¿Â¼.docx
©¦  ©À©¤Ä£Ê½Ê¶±ð_35_¹ú·À¿ÆÑ§¼¼Êõ´óѧ(²ÌÐûƽ)
©¦  ©¦  ©À©¬01.¸ÅÊö.flv
©¦  ©¦  ©À©¬02.ÌØÕ÷ʸÁ¿¼°ÌØÕ÷¿Õ¼ä¡¢Ëæ»úʸÁ¿¡¢Õý̬·Ö²¼ÌØÐÔ.flv
©¦  ©¦  ©À©¬03.¾ÛÀà·ÖÎöµÄ¸ÅÄî¡¢ÏàËÆÐÔ²â¶È.flv
©¦  ©¦  ©À©¬04.ÏàËÆÐÔ²â¶È£¨¶þ£©.flv
©¦  ©¦  ©À©¬05.Àà¼ä¾àÀë¡¢×¼Ôòº¯Êý.flv
©¦  ©¦  ©À©¬06.¾ÛÀàËã·¨£º¼òµ¥¾ÛÀàËã·¨¡¢Æ×ϵ¾ÛÀàËã·¨.flv
©¦  ©¦  ©À©¬07.¾ÛÀàËã·¨£º¶¯Ì¬¾ÛÀàËã·¨¡ª¡ªC¾ùÖµ¾ÛÀàËã·¨.flv
©¦  ©¦  ©À©¬08.¾ÛÀàËã·¨£º¶¯Ì¬¾ÛÀàËã·¨¡ª¡ª½üÁÚº¯ÊýËã·¨.flv
©¦  ©¦  ©À©¬09.¾ÛÀàË㷨ʵÑé.flv
©¦  ©¦  ©À©¬10.ÅбðÓò½çÃæ·½³Ì·ÖÀàµÄ¸ÅÄî¡¢ÏßÐÔÅбðº¯Êý.flv
©¦  ©¦  ©À©¬11.Åбðº¯ÊýÖµµÄ¼ø±ðÒâÒ塢Ȩ¿Õ¼ä¼°½â¿Õ¼ä¡¢fisherÏßÐÔÅбð.flv
©¦  ©¦  ©À©¬12.ÏßÐÔ¿É·ÖÌõ¼þÏÂÅбðº¯ÊýȨʸÁ¿Ëã·¨.flv
©¦  ©¦  ©À©¬13.Ò»°ãÇé¿öϵÄÅбðº¯ÊýȨʸÁ¿Ëã·¨.flv
©¦  ©¦  ©À©¬14.·ÇÏßÐÔÅбðº¯Êý.flv
©¦  ©¦  ©À©¬15.×î½üÁÚ·½·¨.flv
©¦  ©¦  ©À©¬16.¸ÐÖªÆ÷Ë㷨ʵÑé.flv
©¦  ©¦  ©À©¬17.×îСÎóÅиÅÂÊ×¼Ôò.flv
©¦  ©¦  ©À©¬18.Õý̬·Ö²¼µÄ×îСÎóÅиÅÂÊ¡¢×îСËðʧ׼ÔòÅоö.flv
©¦  ©¦  ©À©¬19.º¬¾Ü¾øÅоöµÄ×îСËðʧ׼Ôò¡¢×îС×î´óËðʧ׼Ôò.flv
©¦  ©¦  ©À©¬20.Neyman¡ªPearsonÅоö¡¢ÊµÀý.flv
©¦  ©¦  ©À©¬21.¸ÅÊö¡¢¾Ø·¨¹À¼Æ¡¢×î´óËÆÈ»¹À¼Æ.flv
©¦  ©¦  ©À©¬22.±´Ò¶Ë¹¹À¼Æ.flv
©¦  ©¦  ©À©¬23.±´Ò¶Ë¹Ñ§Ï°.flv
©¦  ©¦  ©À©¬24.¸ÅÃܵĴ°º¯Êý¹À¼Æ·½·¨.flv
©¦  ©¦  ©À©¬25.ÓÐÏÞÏîÕý½»º¯Êý¼¶Êý±Æ½ü·¨.flv
©¦  ©¦  ©À©¬26.´íÎóÂʹÀ¼Æ.flv
©¦  ©¦  ©À©¬27.С½á.flv
©¦  ©¦  ©À©¬28.ʵÑé3-4-5 Bayes·ÖÀàÆ÷-kNN·ÖÀàÆ÷-ÊÓÆµ¶¯Ä¿±ê¼ì²â.flv
©¦  ©¦  ©À©¬29.¸ÅÊö¡¢Àà±ð¿É·ÖÐÔÅоݣ¨Ò»£©.flv
©¦  ©¦  ©À©¬30.Àà±ð¿É·ÖÐÔÅоݣ¨¶þ£©.flv
©¦  ©¦  ©À©¬31.»ùÓÚ¿É·ÖÐÔÅоݵÄÌØÕ÷ÌáÈ¡.flv
©¦  ©¦  ©À©¬32.ÀëÉ¢KL±ä»»ÓëÌØÕ÷ÌáÈ¡.flv
©¦  ©¦  ©À©¬33.ÀëÉ¢KL±ä»»ÔÚÌØÕ÷ÌáÈ¡ÓëÑ¡ÔñÖеÄÓ¦ÓÃ.flv
©¦  ©¦  ©À©¬34.ÌØÕ÷Ñ¡ÔñÖеÄÖ±½ÓÌôÑ¡·¨.flv
©¦  ©¦  ©¸©¬35.×ÛºÏʵÑé-ͼÏñÖеÄ×Ö·ûʶ±ð.flv
©¦  ©À©¤Í³¼Æ»úÆ÷ѧϰ_41_ÉϺ£½»´ó(ÕÅÖ¾»ª)
©¦  ©¦  ©À©¬01 ¸ÅÂÊ»ù´¡.mp4
©¦  ©¦  ©À©¬02 Ëæ»ú±äÁ¿1.mp4
©¦  ©¦  ©À©¬03 Ëæ»ú±äÁ¿2.mp4
©¦  ©¦  ©À©¬04 ¸ß˹·Ö²¼.mp4
©¦  ©¦  ©À©¬05 ¸ß˹·Ö²¼Àý×Ó.mp4
©¦  ©¦  ©À©¬06 Á¬Ðø·Ö²¼.mp4
©¦  ©¦  ©À©¬07 jeffrey prior.mp4
©¦  ©¦  ©À©¬08 scale mixture pisribarin.mp4
©¦  ©¦  ©À©¬09 statistic interence.mp4
©¦  ©¦  ©À©¬10 Laplace ±ä»».mp4
©¦  ©¦  ©À©¬11 ¶àÔª·Ö²¼¶¨Òå.mp4
©¦  ©¦  ©À©¬12 ¸ÅÂʱ任.mp4
©¦  ©¦  ©À©¬13 Jacobian.mp4
©¦  ©¦  ©À©¬14 Wedge production.mp4
©¦  ©¦  ©À©¬15 Wishart ·Ö²¼.mp4
©¦  ©¦  ©À©¬16 ¶àÔªÕý̬·Ö²¼.mp4
©¦  ©¦  ©À©¬17 ͳ¼ÆÁ¿.mp4
©¦  ©¦  ©À©¬18 ¾ØÕóÔªBeta·Ö²¼.mp4
©¦  ©¦  ©À©¬19 ¹²éîÏÈÑéÐÔÖÊ.mp4
©¦  ©¦  ©À©¬20 ͳ¼ÆÁ¿ ³ä·Öͳ¼ÆÁ¿.mp4
©¦  ©¦  ©À©¬21 Ö¸ÊýÖµ·Ö²¼.mp4
©¦  ©¦  ©À©¬22 Entropy.mp4
©¦  ©¦  ©À©¬23 KL distance.mp4
©¦  ©¦  ©À©¬24 Properties.mp4
©¦  ©¦  ©À©¬25 ¸ÅÂʲ»µÈʽ1.mp4
©¦  ©¦  ©À©¬26 ¸ÅÂʲ»µÈʽ2.mp4
©¦  ©¦  ©À©¬27 ¸ÅÂʲ»µÈʽ1.mp4
©¦  ©¦  ©À©¬28 ¸ÅÂʲ»µÈʽ2.mp4
©¦  ©¦  ©À©¬29 ¸ÅÂʲ»µÈʽ3.mp4
©¦  ©¦  ©À©¬30 John ÒýÀí.mp4
©¦  ©¦  ©À©¬31 ¸ÅÂʲ»µÈʽ.mp4
©¦  ©¦  ©À©¬32 Ëæ»úͶӰ.mp4
©¦  ©¦  ©À©¬33 Stochastic Convergence-¸ÅÄî.mp4
©¦  ©¦  ©À©¬34 Stochastic Convergence-ÐÔÖÊ.mp4
©¦  ©¦  ©À©¬35 Stochastic Convergence-Ó¦ÓÃ.mp4
©¦  ©¦  ©À©¬36 EMËã·¨1.mp4
©¦  ©¦  ©À©¬37 EMËã·¨2.mp4
©¦  ©¦  ©À©¬38 EMËã·¨3.mp4
©¦  ©¦  ©À©¬39 Bayesian Classification.mp4
©¦  ©¦  ©À©¬40 Markov Chain Monte carlo1.mp4
©¦  ©¦  ©¸©¬41 Markov Chain Monte carlo2.mp4
©¦  ©¸©¬ÄϾ©´óѧÖÜÖ¾»ªÀÏʦµÄÒ»¸ö½²ÆÕÊÊ»úÆ÷ѧϰµÄppt¡¾¾«Æ·-ppt¡¿.ppt
©À©¤ML_»úÆ÷ѧϰӦÓðà
©¦  ©À©¤µÚ°Ë¿Î
©¦  ©¦  ©¸©¬8.mp4
©¦  ©À©¤µÚ¶þ¿Î
©¦  ©¦  ©À©¬Ó¦Óðà2_1_1h44min.mp4
©¦  ©¦  ©¸©¬Ó¦ÓðàµÚ¶þ¿ÎµÚ¶þ²¿·Ö  .mp4
©¦  ©À©¤µÚ¾Å¿Î
©¦  ©¦  ©À©¬9-1.mp4
©¦  ©¦  ©¸©¬9-2.mp4
©¦  ©À©¤µÚÁù¿Î
©¦  ©¦  ©À©¬6-1.mp4
©¦  ©¦  ©¸©¬6-2.mp4
©¦  ©À©¤µÚÆß¿Î
©¦  ©¦  ©À©¬7-1.flv
©¦  ©¦  ©¸©¬7-2.mp4
©¦  ©À©¤µÚÈý¿Î
©¦  ©¦  ©¸©¬Ó¦ÓðàµÚÈý½Ú¿Î.mp4
©¦  ©À©¤µÚÊ®¿Î
©¦  ©¦  ©¸©¬10.mp4
©¦  ©À©¤µÚËÄ¿Î
©¦  ©¦  ©À©¬µÚ¶þ²¿·Ö.mp4
©¦  ©¦  ©¸©¬Ó¦ÓðàµÚËĽڿÎ1_1h44_33.mp4
©¦  ©À©¤µÚÎå¿Î
©¦  ©¦  ©À©¬5-1.mp4
©¦  ©¦  ©¸©¬5-2.mp4
©¦  ©À©¤µÚÒ»¿Î
©¦  ©¦  ©À©¬µÚÒ»¿Î.mp4
©¦  ©¦  ©¸©¬»úÆ÷ѧϰӦÓðàµÚ1¿ÎÊýѧ»ù´¡ (1).pdf
©¦  ©¸©¬»úÆ÷ѧϰӦÓðà×ÊÁÏ.zip
©À©¤Ëã·¨_10Ô»úÆ÷ѧϰËã·¨°à
©¦  ©À©¤ppt
©¦  ©¦  ©À©¬Thumbs.db
©¦  ©¦  ©À©¬Ê®ÔÂËã·¨°àµÚ10½²£ºÍƼöϵͳ.pdf
©¦  ©¦  ©À©¬Ê®ÔÂËã·¨°àµÚ11½²£ºCTRÔ¤¹À.pdf
©¦  ©¦  ©À©¬Ê®ÔÂËã·¨°àµÚ12½²£º¾ÛÀàºÍÉç½»ÍøÂçËã·¨-10Ô»úÆ÷ѧϰËã·¨°à.pdf
©¦  ©¦  ©À©¬Ê®ÔÂËã·¨°àµÚ13½²£º»úÆ÷ѧϰË㷨֮ͼģÐͳõ²½.pdf
©¦  ©¦  ©À©¬Ê®ÔÂËã·¨°àµÚ15½²£ºÖ÷ÌåÄ£ÐÍ.pdf
©¦  ©¦  ©À©¬Ê®ÔÂËã·¨°àµÚ16½²£ºÈ˹¤Éñ¾­ÍøÂç.pdf
©¦  ©¦  ©À©¬Ê®ÔÂËã·¨°àµÚ17½²£º¼ÆËã»úÊÓ¾õÓë¾í»ýÉñ¾­ÍøÂç.pdf
©¦  ©¦  ©À©¬Ê®ÔÂËã·¨°àµÚ18½²£ºÑ­»·Éñ¾­ÍøÂçÓë×ÔÈ»ÓïÑÔ´¦Àí.pdf
©¦  ©¦  ©À©¬Ê®ÔÂËã·¨°àµÚ19½²£ºÉî¶Èѧϰ¿ò¼ÜÓëÓ¦ÓÃ.pdf
©¦  ©¦  ©À©¬Ê®ÔÂËã·¨°àµÚ1½².pdf
©¦  ©¦  ©À©¬Ê®ÔÂËã·¨°àµÚ20½²£º²ÉÑùÓë±ä·Ö.pdf
©¦  ©¦  ©À©¬Ê®ÔÂËã·¨°àµÚ2½².pdf
©¦  ©¦  ©À©¬Ê®ÔÂËã·¨°àµÚ3½²£ºÍ¹ÓÅ»¯³õ²½.pdf
©¦  ©¦  ©À©¬Ê®ÔÂËã·¨°àµÚ4½Ú£º×î´óìØÄ£ÐÍÓëEM.pdf
©¦  ©¦  ©À©¬Ê®ÔÂËã·¨°àµÚ5½²£º¾ö²ßÊ÷Ëæ»úÉ­ÁÖ.pdf
©¦  ©¦  ©À©¬Ê®ÔÂËã·¨°àµÚ8½²£º»úÆ÷ѧϰÖеÄÌØÕ÷¹¤³Ì---±Ê¼Ç°æ.pdf
©¦  ©¦  ©¸©¬Ê®ÔÂËã·¨°àµÚ9½²£º»úÆ÷ѧϰµ÷ÓÅÓëÈÚºÏ.pdf
©¦  ©À©¤Ô´Âë
©¦  ©¦  ©À©¬Image_seg.zip
©¦  ©¦  ©¸©¬¿Î³ÌPPTÓë´úÂë.zip
©¦  ©À©¬01.µÚ1¿Î ¸ÅÂÊÂÛÓëÊýÀíͳ¼Æ.mkv
©¦  ©À©¬02.µÚ2¿Î ¾ØÕóºÍÏßÐÔ´úÊý.mkv
©¦  ©À©¬03.µÚ3¿Î ͹ÓÅ»¯.mkv
©¦  ©À©¬04.µÚ4¿Î »Ø¹é.mkv
©¦  ©À©¬05.µÚ5¿Î ¾ö²ßÊ÷¡¢Ëæ»úÉ­ÁÖ.mkv
©¦  ©À©¬06.µÚ6¿Î SVM.mkv
©¦  ©À©¬07.µÚ7¿Î ×î´óìØÓëEMËã·¨.mkv
©¦  ©À©¬08.µÚ8¿Î ÌØÕ÷¹¤³Ì.mkv
©¦  ©À©¬09.µÚ9¿Î Ä£Ð͵÷ÓÅ.mkv
©¦  ©À©¬10.µÚ10¿Î ÍÆ¼öϵͳ.mkv
©¦  ©À©¬11.µÚ11¿Î ´Ó·ÖÀൽCTRÔ¤¹À.mkv
©¦  ©À©¬12.µÚ12¿Î ¾ÛÀà.mkv
©¦  ©À©¬13.µÚ13¿Î ±´Ò¶Ë¹ÍøÂç.mkv
©¦  ©À©¬14.µÚ14¿Î ÒþÂí¶û¿Æ·òÄ£ÐÍHMM.mkv
©¦  ©À©¬15.µÚ15¿Î Ö÷ÌâÄ£ÐÍ.mkv
©¦  ©À©¬16.µÚ16¿Î ²ÉÑùÓë±ä·Ö.mkv
©¦  ©À©¬17.µÚ17¿Î È˹¤Éñ¾­ÍøÂç.mkv
©¦  ©À©¬18.µÚ18¿Î Éî¶Èѧϰ֮CNN.mkv
©¦  ©À©¬19.µÚ19¿Î Éî¶Èѧϰ֮RNN.mkv
©¦  ©¸©¬20.µÚ20¿Î Éî¶Èѧϰʵ¼ù.mkv
©¸©¤Ëã·¨_4Ô»úÆ÷ѧϰËã·¨°à
©¸©¤©À©¤(01)»úÆ÷ѧϰÓëÏà¹ØÊýѧ³õ²½
©¸©¤©¦  ©À©¬(1)»úÆ÷ѧϰ³õ²½Óë΢»ý·Ö¸ÅÂÊÂÛ.pdf
©¸©¤©¦  ©¸©¬(1)»úÆ÷ѧϰÓëÏà¹ØÊýѧ³õ²½.avi
©¸©¤©À©¤(02)ÊýÀíͳ¼ÆÓë²ÎÊý¹À¼Æ
©¸©¤©¦  ©À©¬(2)ÊýÀíͳ¼ÆÓë²ÎÊý¹À¼Æ.avi
©¸©¤©¦  ©¸©¬(2)ÊýÀíͳ¼ÆÓë²ÎÊý¹À¼Æ.pdf
©¸©¤©À©¤(03)¾ØÕó·ÖÎöÓëÓ¦ÓÃ
©¸©¤©¦  ©À©¬(3)¾ØÕó·ÖÎöÓëÓ¦ÓÃ.avi
©¸©¤©¦  ©¸©¬(3)¾ØÕó·ÖÎöÓëÓ¦ÓÃ.pdf
©¸©¤©À©¤(04)͹ÓÅ»¯³õ²½
©¸©¤©¦  ©À©¬(4)͹ÓÅ»¯³õ²½.avi
©¸©¤©¦  ©¸©¬(4)͹ÓÅ»¯³õ²½.pdf
©¸©¤©À©¤(05)»Ø¹é·ÖÎöÓ빤³ÌÓ¦ÓÃ
©¸©¤©¦  ©À©¤¿Î¼þºÍÊý¾Ý¼°´úÂë
©¸©¤©¦  ©¸©¬(5)»Ø¹é·ÖÎöÓ빤³ÌÓ¦ÓÃ.avi
©¸©¤©À©¤(06)ÌØÕ÷¹¤³Ì
©¸©¤©¦  ©À©¤¿Î¼þÓëÊý¾Ý¼°´úÂë
©¸©¤©¦  ©¸©¬(6)ÌØÕ÷¹¤³Ì.avi
©¸©¤©À©¤(07)¹¤×÷Á÷³ÌÓëÄ£Ð͵÷ÓÅ
©¸©¤©¦  ©À©¬(7)¹¤×÷Á÷³ÌÓëÄ£Ð͵÷ÓÅ.avi
©¸©¤©¦  ©¸©¬(7)¹¤×÷Á÷³ÌÓëÄ£Ð͵÷ÓÅ.zip
©¸©¤©À©¤(08)×î´óìØÄ£ÐÍÓëEMËã·¨
©¸©¤©¦  ©À©¬(8)×î´óìØÄ£ÐÍÓëEMËã·¨.avi
©¸©¤©¦  ©¸©¬(8)×î´óìØÄ£ÐÍÓëEMËã·¨.pdf
©¸©¤©À©¤(09)ÍÆ¼öϵͳÓëÓ¦ÓÃ
©¸©¤©¦  ©À©¤(9)ÍÆ¼öϵͳÓëÓ¦ÓÃ
©¸©¤©¦  ©¸©¬(9)ÍÆ¼öϵͳÓëÓ¦ÓÃ.avi
©¸©¤©À©¤(10)¾ÛÀàËã·¨ÓëÓ¦ÓÃ
©¸©¤©¦  ©À©¬(10)¾ÛÀàËã·¨ÓëÓ¦ÓÃ.avi
©¸©¤©¦  ©¸©¬(10)¾ÛÀàËã·¨ÓëÓ¦ÓÃ.pdf
©¸©¤©À©¤(11)¾ö²ßÊ÷Ëæ»úÉ­ÁÖºÍadaboost
©¸©¤©¦  ©À©¤´úÂë
©¸©¤©¦  ©À©¬(11)¾ö²ßÊ÷Ëæ»úÉ­ÁÖadaboost.avi
©¸©¤©¦  ©¸©¬(11)¾ö²ßÊ÷Ëæ»úÉ­ÁÖadaboost.pdf
©¸©¤©À©¤(12)SVM
©¸©¤©¦  ©À©¤(²¹³ä²ÄÁÏ1)SVM²¹³äÊÓÆµ
©¸©¤©¦  ©À©¤(²¹³ä²ÄÁÏ2)SVMµÄPython³ÌÐò´úÂë
©¸©¤©¦  ©À©¬(12)SVM.avi
©¸©¤©¦  ©À©¬(12)SVM.pdf
©¸©¤©¦  ©¸©¬(12)Ö§³ÖÏòÁ¿»ú.ipynb
©¸©¤©À©¤(13)±´Ò¶Ë¹·½·¨
©¸©¤©¦  ©À©¬(13)±´Ò¶Ë¹·½·¨.avi
©¸©¤©¦  ©À©¬(13)±´Ò¶Ë¹·½·¨.pdf
©¸©¤©¦  ©¸©¬naive_bayes-master.zip
©¸©¤©À©¤(14)Ö÷ÌâÄ£ÐÍ
©¸©¤©¦  ©À©¬(14)Ö÷ÌâÄ£ÐÍ.avi
©¸©¤©¦  ©À©¬(14)Ö÷ÌâÄ£ÐÍ.pdf
©¸©¤©¦  ©À©¬(²¹³äÔĶÁ²ÄÁÏ1)Comparing LDA with pLSI as a Dimensionality Reduction Method in Document Clustering.pdf
©¸©¤©¦  ©À©¬(²¹³äÔĶÁ²ÄÁÏ2)Investigating task performance of probabilistic topic models - an empirical study of PLSA and LDA.pdf
©¸©¤©¦  ©¸©¬LDAClassify.zip
©¸©¤©À©¤(15)±´Ò¶Ë¹ÍÆÀí²ÉÑùÓë±ä·Ö
©¸©¤©¦  ©À©¬(15)±´Ò¶Ë¹ÍÆÀí-²ÉÑùÓë±ä·Ö¼ò½é.pdf
©¸©¤©¦  ©À©¬(15)±´Ò¶Ë¹ÍÆÀí²ÉÑù±ä·Ö·½·¨.avi
©¸©¤©¦  ©¸©¬gibbsGauss.py
©¸©¤©À©¤(16)È˹¤Éñ¾­ÍøÂç
©¸©¤©¦  ©À©¬(16)È˹¤Éñ¾­ÍøÂç.avi
©¸©¤©¦  ©À©¬(16)È˹¤Éñ¾­ÍøÂç.pdf
©¸©¤©¦  ©¸©¬Lesson_16_Neural_network_example.ipynb
©¸©¤©À©¤(17)¾í»ýÉñ¾­ÍøÂç
©¸©¤©¦  ©À©¬(17)¾í»ýÉñ¾­ÍøÂç.avi
©¸©¤©¦  ©¸©¬(17)¾í»ýÉñ¾­ÍøÂç.pdf
©¸©¤©À©¤(18)Ñ­»·Éñ¾­ÍøÂçÓëLSTM
©¸©¤©¦  ©À©¬(18)Ñ­»·Éñ¾­ÍøÂçºÍLSTM.avi
©¸©¤©¦  ©¸©¬(18)Ñ­»·Éñ¾­ÍøÂçÓëLSTM.pdf
©¸©¤©À©¤(19)Caffe&Tensor Flow&MxNet ¼ò½é
©¸©¤©¦  ©À©¬(19)Caffe&Tensor Flow&MxNet ¼ò½é.avi
©¸©¤©¦  ©¸©¬(19)Caffe&Tensor Flow&MxNet ¼ò½é.pdf
©¸©¤©À©¤(20)±´Ò¶Ë¹ÍøÂçºÍHMM
©¸©¤©¦  ©À©¬(20)±´Ò¶Ë¹ÍøÂçºÍHMM.avi
©¸©¤©¦  ©¸©¬(20)±´Ò¶Ë¹ÍøÂçºÍHMM.pdf
©¸©¤©¸©¤(¶îÍâ²¹³ä)´ÊǶÈëword embedding
©¸©¤©¸©¤©À©¬(¶îÍâ²¹³ä)´ÊǶÈëword embedding.avi
©¸©¤©¸©¤©¸©¬(¶îÍâ²¹³ä)´ÊǶÈëÔ­Àí¼°Ó¦Óüò½é.pdf

Óοͣ¬Èç¹ûÄúÒª²é¿´±¾ÌûÒþ²ØÄÚÈÝÇë»Ø¸´


¸ü¶àÌû×ÓÍÆ¼ö

»Ø¸´

ʹÓõÀ¾ß ¾Ù±¨

QQ|Archiver|ÊÖ»ú°æ|ü\Óü¿Æ¼¼Íø

GMT+8, 2025-11-30 10:53 , Processed in 0.205017 second(s), 27 queries .

Powered by Discuz! X3.4

© 2001-2023 Discuz! Team.

¿ìËٻظ´ ·µ»Ø¶¥²¿ ·µ»ØÁбí